Основные законы развития технических систем. Начнем со "статики" - законов, которые определяют начало жизни технических систем. Последнее требование системности - учет исторического развития системы необходим при прогнозировании развития объекта исследова

27.04.2019

Одной из предпосылок ТРИЗ является то, что существуют объективные законы развития и функционирования систем, опираясь на которые можно строить изобретательские решения. Другими словами, многие технические, производственные, экономические и социальные системы развиваются по одним и тем же правилам и принципам. Г. С. Альтшуллер обнаружил их, изучив патентный фонд и проанализировав пути развития и усовершенствования техники в течение долгого времени. Результаты, опубликованные в книгах ««Линии жизни» технических систем» и «О законах развития технических систем», позже объединенные в работе «Творчество как точная наука», стали базисом для Теории развития технических систем (ТРТС).

В данном уроке мы предлагаем вам познакомиться с этими законами, подкрепленными примерами. В программе обучения ТРИЗ они занимают главное место, поскольку раскрываются и детализируются в правилах их применения, в стандартах, принципах разрешения противоречий, вепольном анализе и АРИЗе.

Терминология и краткое введение

Закон развития технической системы (ЗРТС) - это существенное, устойчивое, повторяющееся отношение между элементами внутри системы и с внешней средой в процессе прогрессивного развития, перехода системы от одного состояния к другому с целью увеличения ее полезной функциональности.

Г. С. Альтшуллер открытые законы разделил на три раздела «Статику», «Кинематику», «Динамику». Названия эти условны и не имеют прямого отношения к физике. Но можно проследить связь этих групп с моделью «начала жизни-развития-смерти» в соответствии с законом S-образного развития технических систем, который автор предложил для полной картины эволюции процессов в технике. Она изображается логистической кривой, которая показывает меняющиеся со временем темпы развития. Этапов три:

1. «Детство». Конкретно в технике это длительный процесс проектирования системы, ее доработки, изготовления опытного образца, подготовки к серийному выпуску. В глобальном понимании этап связан с законами «Статики» - группой, объединенной критериями жизнеспособности возникающих технических систем (ТС). Говоря простым языком, благодаря этим законам можно дать ответы на два вопроса: Будет ли жить и функционировать создаваемая система? Что нужно сделать для того, чтобы она жила и функционировала?

2. «Расцвет». Этап бурного совершенствования системы, ее становления в качестве мощной и производительной единицы. Он связан со следующей группой законов - «Кинематикой», которая описывает направления развития технических систем вне зависимости от конкретных технических и физических механизмов. В буквальном понимании это означает те изменения, которые должны произойти в системе, чтобы она отвечала возрастающим к ней требованиям.

3. «Старость». С какого-то момента развитие системы замедляется, а позже прекращается вовсе. Это обусловлено законами «Динамики», характеризующими развитие ТС в условиях действия конкретных технических и физических факторов. «Динамика» противоположна «Кинематике» - законы этой группы определяют лишь возможные изменения, которые могут быть совершены в данных условиях. Когда возможности совершенствования исчерпаны, на смену старой системе приходит новая, и весь цикл повторяется.

Законы первых двух групп - «Статики» и «Кинематики» - универсальны по своему характеру. Они действуют в любую эпоху и применимы не только к техническим системам, но и к биологическим, социальным и т. д. «Динамика» же, по словам Альтшуллера, говорит об основных тенденциях функционирования систем именно в наше время.

Как пример действия комплекса этих законов в технике можно вспомнить развитие такой технической системы, как весельный флот. Она прошла становление от маленьких лодок с парой весел до крупных боевых кораблей, где сотни весел располагались в несколько рядов, уступив в результате место парусникам. В социальном и историческом плане примером S-образной системы может служить зарождение, процветание и упадок афинской демократии.

Статика

Законы «Статики» в ТРИЗ определяют начальную стадию функционирования технической системы, начало ее «жизни», определяя необходимые для этого условия. Сама категория «система» говорит нам о целом, составленном из частей. Техническая система, как и любая другая, начинает свою жизнь в результате синтеза отдельных компонентов. Но не всякое такое объединение дает жизнеспособную ТС. Законы группы «Статика» как раз и показывают, какие обязательные условия должны выполняться для успешной работоспособности системы.

Закон 1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Основных частей четыре: двигатель, трансмиссия, рабочий орган и орган управления. Для обеспечения жизнеспособности системы нужны не только эти части, но и их пригодность к выполнению функций ТС. Другими словами, эти составляющие должны быть работоспособными не только по отдельности, но и в системе. Классический пример - двигатель внутреннего сгорания, который работает сам по себе, функционирует в такой ТС как легковой автомобиль, но не пригоден для применения в подводной лодке.

Из закона полноты частей системы следует вывод: чтобы система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой. Управляемость означает способность менять свойства в зависимости от предполагаемых заданий. Это следствие хорошо иллюстрирует пример из книги Ю. П. Саламатова «Система законов развития техники»: воздушный шар, управлять которым можно с помощью клапана и балласта.

Похожий закон был сформулирован в 1840 г. Ю. фон Либихом и для биологических систем.

Закон 2. Закон «энергетической проводимости» системы. Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу. Если какая-то часть ТС не будет получать энергии, то и вся система не будет работать. Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.

Из закона «энергетической проводимости» следует вывод: чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления. Этот закон статики также является основой определения 3 правил энергопроводимости системы:

  1. Если элементы при взаимодействии друг с другом образуют систему, проводящую энергию с полезной функцией, то для повышения ее работоспособности в местах контакта должны быть вещества с близкими или одинаковыми уровнями развития.
  2. Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией, то для ее разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.
  3. Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией, то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

Закон 3. Закон согласования ритмики частей системы. Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Теоретик ТРИЗ А. В. Тригуб уверен, что для устранения вредных явлений или усиления полезных свойств технической системы, необходимо согласовать или рассогласовать частоты колебаний всех подсистем в технической системе и внешних системах. Попросту говоря, для жизнеспособности системы важно, чтобы отдельные части не только работали вместе, но и не мешали друг другу выполнять полезную функцию.

Этот закон прослеживается на примере истории создания установки для дробления камней в почках. Данный аппарат дробит камни целенаправленным лучом ультразвука, чтобы в дальнейшем они выводились натуральным путем. Но изначально для разрушения камня требовалась большая мощность ультразвука, что поражало не только их, но и окружающие ткани. Решение пришло после того, как была согласована частота ультразвука с частотой колебания камней. Это вызывало резонанс, который и разрушал камни, благодаря чему мощность луча удалось уменьшить.

Кинематика

Группа законов ТРИЗ «Кинематика» имеет дело с уже образованными системами, которые проходят этап своего становления. Условие, как было сказано выше, кроется в том, что эти законы определяют развитие ТС, независимо от конкретных технических и физических факторов, его обусловливающих.

Закон 4. Закон увеличения степени идеальности системы. Развитие всех систем идет в направлении увеличения степени идеальности.

В классическом понимании идеальная система - это система, вес, объем, площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря - это когда системы нет, а функция ее сохраняется и выполняется. Все ТС стремятся к идеальности, но идеальных очень мало. Образцом может служить сплав леса плотами, когда корабль для транспортировки не требуется, а функция доставки выполняется.

На практике можно найти множество примеров подтверждения данного закона. Предельный случай идеализации техники заключается в ее уменьшении (вплоть до исчезновения) при одновременном увеличении количества выполняемых ею функций. Например, первые поезда были больше чем сейчас, а пассажиров и грузов перевозили меньше. В дальнейшем габариты уменьшились, усилилась мощность, благодаря чему стала возможной перевозка больших объемов грузов и увеличение пассажиропотока, что привело и к снижению стоимости самой транспортировки.

Закон 5. Закон неравномерности развития частей системы. Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий, и, следовательно, изобретательских задач. Следствием данного закона является то, что рано или поздно изменение одной составляющей ТС спровоцирует цепную реакцию технических решений, которые приведут к изменению и оставшихся частей. Закон находит свое подтверждение в термодинамике. Так, в соответствии с принципом Онсагера: движущая сила любого процесса - это появление неоднородности в системе. Значительно раньше, чем в ТРИЗ, этот закон был описан в биологии: «В ходе прогрессивной эволюции возрастает взаимное приспособление органов, происходит координация изменений частей организма и идет аккумуляция корреляций общего значения».

Отличной иллюстрацией справедливости закона служит развитие автомобильной техники. Первые двигатели обеспечивали относительно небольшую по сегодняшним меркам скорость в 15-20 км/час. Установка двигателей большей мощности увеличила скорость, что со временем стало причиной замены колес на более широкие, изготовления кузова из более прочных материалов и т.д.

Закон 6. Закон опережающего развития рабочего органа. Желательно, чтобы рабочий орган опережал в своем развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Некоторые исследователи выделяют этот закон как отдельный, но многие труды выводят его в комплексе с законом неравномерности развития частей системы. Такой подход нам кажется более органичным, и мы выносим индивидуальный блок для данного закона лишь для большей структурированности и понятности.

Значение этого закона в том, что он указывает на распространенную ошибку, когда с целью увеличения полезности изобретения развивается не рабочий орган, а любой другой, например, управленческий (трансмиссия). Конкретный случай - чтобы создать многофункциональный игровой смартфон, нужно не просто сделать его удобным для держания в руке и оснастить большим дисплеем, а, в первую очередь, позаботиться о мощном процессоре.

Закон 7. Закон динамизации. Жесткие системы для повышения эффективности должны становиться динамичными, то есть переходить к более гибкой, быстро меняющейся структуре и к режиму работы, подстраивающемуся под изменения внешней среды.

Данный закон является универсальным и находит свое отображение во многих сферах. Степенью динамизации - способностью системы приспосабливаться к внешней среде - обладают не только технические системы. Когда-то такую адаптацию прошли биологические виды, вышедшие из воды на сушу. Изменяются и социальные системы: все больше компаний практикуют вместо офисной работы удаленную, а многие работники отдают предпочтение фрилансу.

Примеров из техники, подтверждающих данный закон, также множество. Свой облик за пару десятилетий поменяли мобильные телефоны. Причем изменения были не только количественными (уменьшение в размерах), но и качественными (увеличение функиональности, вплоть до перехода в надсистему - планшетофоны). Первые бритвенные станки «Gilette» имели неподвижную головку, которая позже стала более удобной движущейся. Еще один пример: в 30-е гг. в СССР выпускались быстрые танки БТ-5, которые по бездорожью двигались на гусеницах, а выехав на дорогу, сбрасывали их и шли на колесах.

Закон 8. Закон перехода в надсистему. Развитие системы, достигшей своего предела, может быть продолжено на уровне надсистемы.

Когда динамизация системы невозможна, другими словами, когда ТС полностью исчерпала свои возможности и дальнейших путей ее развития нет, система переходит в надсистему (НС). В ней она работает в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы. Переход происходит не всегда и ТС может оказаться мертвой, как, например, произошло с каменными орудиями труда первых людей. Система может не переходить в НС, а оставаться в состоянии, когда не может быть существенно усовершенствована, но сохранять жизнеспособность в силу необходимости этого людям. Примером такой технической системы служит велосипед.

Вариантом перехода системы в надсистему может быть создание би- и полисистем. Его еще называют законом перехода «моно - би - поли». Такие системы более надежны и функциональны, благодаря приобретаемым в результате синтеза качествам. После прохождения этапов би- и поли- наступает свертывание - либо ликвидация системы (каменный топор), поскольку она свое уже отслужила, либо переход ее в надсистему. Классический пример проявления: карандаш (моносистема) - карандаш с ластиком на конце (бисистема) - разноцветные карандаши (полисистема) - карандаш с циркулем или ручка (свертывание). Или бритва: с одним лезвием - с двумя - с тремя и более - бритва с вибрацией.

Этот закон является не только общим законом развития систем, схемой, по которой развивается все, но и законом природы, ведь симбиоз живых организмов с целью выживания известен с незапамятных времен. Как подтверждение: лишайники (симбиоз гриба и водорослей), членистоногие (рак-отшельник и актинии), люди (бактерии в желудке).

Динамика

«Динамика» объединяет законы развития ТС характерные для нашего времени и определяет возможные изменения в них в научно-технических условиях современности.

Закон 9. Закон перехода с макроуровня на микроуровень. Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

Суть заключается в том, что любая ТС для развития своего полезного функционала стремится перейти с макроуровня на микроуровень. Другими словами, в системах соблюдается тенденция перехода функции рабочего органа от колес, шестерней, валов и т. д. к молекулам, атомам, ионам, которые легко управляются полями. Это одна из главных тенденций развития всех современных технических систем.

Понятия «макроуровень» и «микроуровень» являются в данном отношении скорее условными и призваны показать уровни мышления человека, где первый уровень - что-то физически соизмеримое, а второй - понимаемое. В жизни любой ТС наступает момент, когда дальнейшее экстенсивное (увеличение полезной функции за счет изменений на макроуровне) развитие невозможно. Дальше систему можно развивать только интенсивно, за счет повышения организованности все более низких системных уровней вещества.

В технике переход между макро- и микроуровнями хорошо демонстрирует эволюция строительного материала - кирпича. Сначала это была просто организация формы глины для удобства. Но однажды человек забыл кирпич на пару часов на солнце, а когда вспомнил о нем - тот затвердел, что сделало его более надежным и практичным. Но со временем было замечено, что такой материал плохо держит тепло. Было совершено новое изобретение - теперь в кирпиче оставляли большое количество воздушных капилляров - микропустот, что существенно понизило его теплопроводность.

Закон 10. Закон повышения степени вепольности. Развитие технических систем идет в направлении увеличения степени вепольности.

Г. С. Альтшуллер писал: «Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы».

Веполь - (вещество+поле) - модель взаимодействия в минимальной технической системе. Это понятие абстрактное, применяемое в ТРИЗ для описания некоторого вида отношений. Под вепольностью стоит понимать управляемость. Дословно закон описывает вепольность как последовательность изменения структуры и элементов веполей с целью получения более управляемых технических систем, т.е. систем более идеальных. При этом в процессе изменения необходимо осуществлять согласование веществ, полей и структуры. Примером может служить диффузионная сварка и лазер для резки различных материалов.

В заключение отметим, что здесь собраны лишь описанные в литературе законы, в то время как теоретики ТРИЗ говорят о существовании и других, открыть и сформулировать которые еще предстоит.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Понятие технических систем, законы строения и развития технических систем

Как отмечалось в параграфе 1.2, понятия «технология» и «техника» не тождественны: техника является только одним из средств реализации технологии. Следуя той же логике, необходимо различать технологические и технические системы, а, значит, и знать отличия закономерностей их формирования и развития.

Техническая система включает в себя пространственную совокупность взаимосвязанных элементов, образующих нечто целое, предназначенное для выполнения одной или нескольких


функций, и необходимых или непосредственно человеку, или другим техническим устройствам.

Очевидно, что техническая система является материальной системой. Ее можно изучать, совершенствовать, целенаправленно видоизменяя составные элементы. Важнейшими составными элементами любой технической системы являются: рабочий орган (исполнительный механизм), источник энергии (привод), трансмиссия (передаточный механизм) и орган управления.

Очевидно также, что выполняющие одну и ту же функцию технические системы могут, тем не менее, отличаться друг от друга принципом своего действия, а, значит, и составляющими элементами.

Идея потребности в технической системе реализуется через принцип действия, обеспечивающий возможность ее функционирования с помощью соответствующего рабочего органа - первичного элемента любой системы, под который подбираются все остальные элементы. В свою очередь подходящий принцип действия выбирается из известных законов природы.

Таким образом, целенаправленное создание новой технической системы проходит следующие этапы: потребность человека (общества) - возникновение идеи - поиск соответствующих знаний - определение принципа действия системы - выбор рабочего органа - подбор остальных элементов системы.

Система будет работоспособной, если минимально работоспособными будут все четыре органа. Повышение работоспособности (функциональности) системы происходит за счет совершенствования всех ее органов. Это совершенствование происходит неравномерно - то один, то другой элемент в своем развитии вырывается вперед и вынуждает совершенствоваться и остальные. Но наступает период, когда из резервов всех элементов выжато все возможное и дальше улучшать нечего и некуда - система исчерпала свои возможности. Она или умирает (например, гусиное перо в качестве пишущего средства, факел), или останавливается в своем развитии (карандаш, лампа накаливания), или ее рабочий орган входит в новую систему (грифель обычного карандаша - в цанговый карандаш).

Таким образом, историю развития технической системы можно представить в виде схемы, состоящей из длинной цепочки сменяющих друг друга систем с различными принципами действия, подсистемами, надсистемами, связями между ними. Такую схему называют «системный оператор», так как она позволяет ориентироваться во всей генетике системы, или «схемой многоэкранного мышления».


Чем больше «экранов» человеческий разум может увидеть, чем больше связей установить и учесть, тем легче принять объективность законов развития технических систем.

В настоящее время сформулированы следующие законы строения и развития техники:

Законы строения:

1. Закон соответствия между функцией и структурой.

Суть данного закона состоит в том, что в правильно спроектированной технической системе каждый элемент - от сложных узлов до простых деталей имеет вполне определенную функцию (назначение) по обеспечению работы этой системы. Таким образом, у правильно спроектированных технических систем нет лишних деталей.

Использование закона максимально результативно при поиске более рациональных и эффективных конструкторско-тех-нологических решений новых технических систем.

2. Закон корреляции параметров однородного ряда техни
ческих систем.

К однородному ряду относятся такие технические системы, которые имеют одинаковые функцию, структуру, условия работы (в смысле взаимодействия с предметами труда и окружающей средой) и отличаются только значениями главного параметра (например, размера).

3. Закон симметрии технических систем.
Техническая система, испытывающая воздействие среды в

виде потоков вещества, энергии или информации, должна иметь определенный вид симметрии.

4. Закон гомологических рядов.

Закон гомологических рядов (от гр. homologos - соответственный, подобный) в наследственной изменчивости был сформулирован Н.И. Вавиловым, установившим параллелизм в изменчивости родственных групп растений. Позже было открыто, что в основе данного явления лежит гомология генов (их одинаковое молекулярное строение и сходство в порядке расположения в хромосомах) у родственных видов.

При генетическом анализе искусственных объектов их можно сравнить с объектами живой природы, каждый из которых тоже достиг очень высокого уровня развития и по-своему совершенен. Принципиальная разница между ними в том, что эволюция объектов живой природы - от простейшей амебы до сложнейших белковых организмов - происходила в естественных условиях их взаимодействия с внешней средой как борьба за выживание. И каждый этап этого совершенствования - тоже разрешение противоречия, но возникшего, например, в свя-


Зи с резким изменением температуры или исчезновением вида, который служил традиционной пищей другого, и т.д.

Таким образом, закон гомологических рядов позволяет довольно точно прогнозировать появление новых технических решений.

Законы развития:

1. Закон прогрессивной эволюции техники.

Действие закона прогрессивной эволюции в мире техники аналогично действию закона естественного отбора Дарвина в живой природе. Его суть состоит в том, что в техническом объекте с одинаковой функцией каждый переход от поколения к поколению вызван устранением возникшего главного дефекта (дефектов), связанным с улучшением какого-либо критерия (показателя) развития при наличии определенных технико-экономических условий. Если же рассматривать все переходы от поколения к поколению, т.е. всю историю конструктивной эволюции определенного класса техники, то можно наблюдать закономерности исчерпания возможностей конструктор-ско-технологических решений на трех уровнях.

На первом уровне улучшаются отдельные параметры используемого технического решения. Когда изменение параметров уже не дает существенного эффекта, осуществляются изменения на втором уровне - путем перехода к более эффективному техническому решению, но без изменения физического принципа действия. Циклы на первом и втором уровнях совершаются до тех пор, пока в рамках используемого принципа действия не исчерпываются возможные новые технические решения, обеспечивающие улучшение интересующих показателей. После этого происходит революционное изменение на третьем уровне - переход на новый, более прогрессивный принцип действия и т.д.

В законе прогрессивной эволюции исчерпание функциональности и эффективности конструкции не просто формальность: пока не будут достигнуты оптимальные параметры, не может произойти переход к новому техническому решению или к новому принципу действия.

Закономерность исчерпания действует лишь при определенных условиях: если при наличии необходимого научно-технического потенциала переход к новому техническому решению или физическому принципу действия обеспечивает получение дополнительной эффективности, превышающей затраты, то может произойти скачок к новому техническому решению или физическому принципу действия без исчерпания возможностей предыдущих.


2. Закон стадийного развития технических систем. Любая техническая система в своем развитии проходит четыре основные стадии:

1) техническая система реализует только функцию обработки предмета труда (технологическая функция);

2) наряду с технологической, техническая система реализует функцию обеспечения процесса энергией (энергетическая функция);

3) техническая система помимо технологической и энергетической реализует функцию управления процессом;

4) техническая система помимо всех предыдущих функций реализует еще функцию планирования, исключая человека из технологического процесса.

Переход к очередной стадии происходит при исчерпании природных возможностей человека в улучшении показателей выполнения фундаментальной функции - удовлетворение потребностей общества. Пример стадийного развития технических систем приведен в табл. 5.1.

Таблица 5.1

Стадийное развитие технических систем

Основная функция технической системы Технологическая функция (ТФ) ТФ + энергетическая функция (ЭФ) ТФ + ЭФ + + функция управления (ФУ) ТФ + ЭФ + + ФУ + функция планирования
Размалывание зерна Каменные жернова с ручным приводом Каменные жернова с приводом от водяного колеса или паровой машины Мельница с системой автоматического управления (САУ) Мельница с САУ, получающая задание от автоматизированной системы планирования работ
Передвижение по водной поверхности Корабль с веслами (мускульный привод) Корабль с парусом (перемещение энергией ветра) Пароход (перемещение энергией пара с возможностью управления) Современный корабль с компьютеризированной системой навигации

3. Закон расширения множества потребностей-функций. При наличии нужного потенциала и социально-экономической целесообразности возникшая новая потребность удовлетворяется с помощью впервые созданных технических систем; при этом возникает новая функция, которая существует до тех пор, пока ее реализация будет обеспечивать улучшение жизни лю-



4. Закон возрастания разнообразия технических систем.

Разнообразие технических систем в мире, стране или отрасли, а также отдельного класса технических систем, имеющих одинаковую функцию, в связи с необходимостью наиболее полного удовлетворения человеческих потребностей, обеспечения высоких темпов производительности труда и улучшения других критериев прогрессивного развития техники со временем монотонно и ускоренно возрастает. Число новых технических систем за промежуток времени t (N (t)) увеличивается по экспоненциальному закону

5. Закон возрастания сложности технических объектов.

Сложность технических объектов с одинаковой функцией в силу действия факторов стадийного развития техники и прогрессивной конструктивной эволюции технических систем от поколения к поколению монотонно и ускоренно возрастает.

Подводя итог вышеизложенному, сформулируем постулат теории решения изобретательских задач: технические системы развиваются по объективно существующим законам: эти законы познаваемы, их можно выявить и использовать для сознательного развития технических систем, которое происходит в общем для всех систем направлении: повышения уровня их идеальности.

1. Закон увеличения степени идеальности системы

Техническая система в своём развитии приближается к идеальности. Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.

Основные пути приближения к идеалу:

1) повышение количества выполняемых функций,

2) «свертывание» в рабочий орган,

3) переход в надсистему.

При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.

Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.

2. Закон S-образного развития технических систем

Эволюцию множества систем можно изобразить логистической кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:

· «детство». Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.

· «расцвет». Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.

· «старость». С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.

3. Закон динамизации

Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации, то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления закрылков, предкрылков, интерцепторов, системы изменения стреловидности и проч.


Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (надсистема) всё же получает большую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)

4. Закон полноты частей системы

Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).

Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).

Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.

Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.

5. Закон сквозного прохода энергии

Итак, любая работающая система состоит из четырёх основных частей и любая из этих частей является потребителем и преобразователем энергии. Но мало преобразовать, надо ещё без потерь передать эту энергию от двигателя к рабочему органу, а от него - на обрабатываемый объект. Это закон сквозного прохода энергии. Нарушение этого закона ведёт к возникновению противоречий внутри технической системы, что в свою очередь порождает изобретательские задачи.

Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.

Первое правило энергопроводимости системы: если элементы при взаимодействии друг с другом образуют систему проводящую энергию с полезной функцией, то для повышения её работоспособности в местах контакта должны быть вещества с близкими или одинаковыми уровнями развития.

Второе правило энергопроводимости системы: если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией, то для её разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.

Третье правило энергопроводимости системы: если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией, то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

6. Закон опережающего развития рабочего органа

В технической системе основной элемент - рабочий орган. И чтобы его функция была выполнена нормально, его способности по усвоению и пропусканию энергии должны быть не меньше, чем двигатель и трансмиссия. Иначе он или сломается, или станет неэффективным, переводя значительную часть энергии в бесполезное тепло. Поэтому желательно, чтобы рабочий орган опережал в своём развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Часто изобретатели совершают ошибку, упорно развивая трансмиссию, управление, но не рабочий орган. Такая техника, как правило, не даёт значительного прироста экономического эффекта и существенного повышения КПД.

7. Закон перехода «моно - би - поли»

Первый шаг - переход к бисистемам. Это повышает надежность системы. Кроме того, в бисистеме появляется новое качество, которое не было присуще моносистеме. Переход к полисистемам знаменует собой эволюционный этап развития, при котором приобретение новых качеств происходит только за счет количественных показателей. Расширенные организационные возможности расположения однотипных элементов в пространстве и времени позволяют полнее задействовать их возможности и ресурсы окружающей среды.

Но на каком-то этапе развития в полисистеме начинают появляться сбои. Упряжка из более чем двенадцати лошадей становится неуправляемой, самолет с двадцатью моторами требует многогократного увеличения экипажа и трудноуправляем. Возможности системы исчерпались. А дальше полисистема снова становится моносистемой. Но на качественно новом уровне. При этом новый уровень возникает только при условии повышения динамизации частей системы, в первую очередь рабочего органа.

8. Закон перехода с макро- на микроуровень

Переход с макро- на микроуровень - главная тенденция развития всех современных технических систем.

Для достижения высоких результатов задействуются возможности структуры вещества. Вначале используется кристаллическая решетка, затем ассоциации молекул, единичная молекула, часть молекулы, атом и, наконец, части атома. (37, 38, 39)

Из книги "Творчество как точная наука", Г.С. Альтшуллер, М. "Советское радио", 1977 г, стр. 122-127.

Законы развития технических систем можно разделить на группы: "статику", "кинематику" и "динамику".

"Статика" — законы, которые определяют начало жизни технических систем. Любая техническая система, возникающая в результате синтеза в единое целое отдельных частей, дает жизнеспособную систему. Существуют, по крайней мере, три закона, выполнение которых необходимо для того, чтобы система оказалась жизнеспособной.

Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления. Смысл закона заключается в том, что для синтеза технической системы необходимо наличие этих четырех частей и их минимальная пригодность к выполнению функций системы, ибо сама по себе работоспособная часть системы может оказаться неработоспособной в составе той или иной технической системы. Например, двигатель внутреннего сгорания, сам по себе работоспособный, оказывается неработоспособным, если его использовать в качестве подводного двигателя подводной лодки.

Закон можно пояснить так: техническая система жизнеспособна в том случае, если все ее части не имеют "двоек", причем "оценки" ставятся по качеству работы данной части в составе системы. Если хотя бы одна из частей оценена "двойкой", система нежизнеспособна даже при наличии "пятерок" у других частей. Аналогичный закон применительно к биологическим системам был сформулирован Либихом еще в середине 19-ого века ("закон минимума").

Из закона вытекает очень важное следствие.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу.

Передача энергии от одной части системы к другой может быть вещественной (например, вал, шестерни, рычаги и т.д.), полевой (например, магнитное поле) и вещественно-полевой (например, передача энергии потоком заряженных частиц). Многие изобретательские задачи сводятся к подбору того или иного вида передачи, наиболее эффективного в заданных условиях.

Важное значение имеет следствие из закона.

Хорошо работают, а значит, и жизнеспособны только системы, в которых вид колебаний подобран так, что части системы не мешают друг другу и наилучшим способом выполняют полезную функцию.

* * *

К "кинематике" относятся законы, определяющие развитие технических систем независимо от конкретных технических и физических факторов, обусловливающих это развитие.

Идеальная техническая система — это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система — это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия "идеальная техническая система", существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т.д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15-20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение КПД двигателя и т.д.) направлялось на увеличение скорости автомобиля и того, что "обслуживает" эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т.д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности — это надежный критерий для корректировки задачи и оценки полученного ответа.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и, следовательно, изобретательских задач. Например, когда начался быстрый рост тоннажа грузовых судов, мощность двигателей быстро увеличилась, а средства торможения остались без изменения. В результате возникла задача: как затормозить, скажем, танкер водоизмещением 200 тыс. тонн. Задача эта до сих пор не имеет эффективного решения: от начала торможения до полной остановки крупные корабли успевают пройти несколько миль…

Один из путей такого перехода: технические системы объединяются с образованием би- полисистемы. Объединение систем в надсистему (НС) "выгодно" для технической системы:

  • часть функций передается в надсистему (например, ремонт телевизоров в одной мастерской);
  • часть подсистем выводятся из технической системы, объединившись в одну становятся частью надсистемы (коллективная антенна вместо десятков индивидуальных);
  • у объединенных в надсистеме технических систем появляются новые функции и свойства…

"Динамика".

Включает законы, отражающие развитие современных технических систем под действием конкретных технических и физических факторов. Законы "статики" и "кинематики" универсальны, — они справедливы во все времена и не только применительно к техническим системам, но и к любым системам вообще (биологическим и т.д.). "Динамика" отражает главные тенденции развития технических систем именно в наше время.

В большинстве современных технических систем рабочими органами являются "железки", например, винты самолета, колеса автомобиля, резцы токарного станка, ковш экскаватора и т.д. Возможно развитие таких рабочих органов в пределах макроуровня: "железки" остаются "железками", но становятся более совершенными. Однако неизбежно наступает момент, когда дальнейшее развитие на макроуровне оказывается невозможным.

Переход с макро- на микроуровень — одна из главных (если не самая главная) тенденций развития современных технических систем.

Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличение степени дисперсности веществ, числа связей между элементами и отзывчивости системы.

ЛЕКЦИЯч.)

Философия техники

1. Природа техники. Философия техники. Этапы развития технического знания.

2. Специфика технического знания.

3. Закономерности развития технических систем.

I. Природа техники. Философия техники. Этапы развития технического знания.

Техника (греч. “технэ” - искусство, мастерство, умение). Понятие «техника» встречается уже у Платона, Аристотеля. В первом приближении, техника – есть совокупность средств человеческой деятельности, создаваемых для осуществления процессов производства и обслуживания непроизводственных потребностей общества. Но в это понятие входят не только технические устройства.

Техника понимается следующим образом:

устройств , артефактов - от отдельных простейших орудий до сложнейших технических систем;

Как совокупность различных видов технической деятельности по созданию этих устройств - от научно-технического исследования и проектирования до их изготовления на производстве и эксплуатации, от разработки отдельных элементов технических систем до системного исследования и проектирования;

Как совокупность технических знаний - от специализированных рецептурно-технических до теоретических научно-технических и системотехнических знаний.

В сфере техники важно не столько производство научно-технических знаний, сколько их применение и получение дальнейших знаний на основе нового опыта, для развития техники. Поскольку применение знаний в технике – есть высшая ступень познания, то здесь важнейшее значение приобретает умение исследовать и изобретать .

Впервые словосочетание «философия техники» возникло в XIX веке (немецкий философ Эрнст Капп. Книга "Основные направления философии техники. К истории возникновения культуры с новой точки зрения", вышла в свет в 1877 г.). Однако только в ХХ веке техника, ее развитие, ее место в обществе и значение для будущего человеческой цивилизации - становится предметом систематического изучения. Собственно технические дисциплины концентрируют свое внимание на отдельных видах техники или на отдельных сторонах техники. Технику в целом, как глобальное явление, они не исследуют.

Только философия техники , во-первых, исследует феномен техники в целом, во-вторых, не только ее внутреннее развитие, но и место в общественном развитии в целом, а также, в-третьих, принимает во внимание широкую историческую перспективу.

Этапы развития технических знаний:

- донаучный : последовательно формируются три типа технических знаний: практико-методические, технологические и конструктивно-технические, но научные знания в технической практике используются нерегулярно

- зарождение технических наук (со второй половины XVIII в. до 70-х гг. XIX в.): происходит, во-первых, формирование научно-технических знаний на основе использования в инженерной практике знаний естественных наук и, во-вторых, появление первых технических наук.

- классический (до середины XIX века): характеризуется построением ряда фундаментальных технических теорий.

- современный : характерно осуществление комплексных исследований, интеграция технических наук не только с естественными, но и с общественными науками, и вместе с тем происходит процесс дальнейшей дифференциации и "отпочкования" технических наук от естественных и общественных.

Технические науки прошли следующие этапы развития:

В качестве приложения различных областей естествознания к определенным классам инженерных задач

Как особый класс научных дисциплин, отличающихся от естественных наук как по объекту, так и по внутренней структуре, но также обладающих дисциплинарной организацией (к сер. ХХ в.).

В качестве системотехники как попытки комплексного теоретического обобщения всех отраслей современной техники и технических наук при ориентации не только на естественнонаучное, но и гуманитарное образование инженеров, т. е. при ориентации на системную картину мира (по наст. время).

Системотехника представляет собой особую деятельность по созданию сложных технических систем и в этом смысле является прежде всего современным видом инженерной, технической деятельности, но в то же время включает в себя особую научную деятельность , поскольку является не только сферой приложения научных знаний. В ней происходит также и выработка новых знаний. Таким образом, в системотехнике научное знание проходит полный цикл функционирования - от его получения до использования в инженерной практике.

Две основные системотехнические задачи:

Обеспечения интеграции частей сложной системы в единое целое

Управления процессом создания этой системы.

Инженер-системотехник должен сочетать в себе талант ученого, конструктора и менеджера, уметь объединять специалистов различного профиля для совместной работы.

Для грамотного инженера важно не только изучать свой объект, но знать историю техники. История техники, понимается не только как история отдельных технических средств, но и как история технических решений, проектов и технических теорий (как успешных, так и нереализованных, казавшихся в свое время тупиковыми). Понимание закономернотей развития техники может стать действительной основой для предвидения ее развития. Поэтому философия и история науки и техники должны занять одно из важных мест в современном инженерном образовании.

В современной инженерной деятельности можно выделить три основных направления , требующих различной подготовки соответствующих специалистов.

Во-первых, это - инженеры-производственники , которые призваны выполнять функции технолога, организатора производства и инженера по эксплуатации. Такого рода инженеров необходимо готовить с учетом их преимущественной практической ориентации.

Во-вторых, это - инженеры-исследователи-разработчики , которые должны сочетать в себе функции изобретателя и проектировщика, тесно связанные с научно-исследовательской работой в области технической науки. Они становятся основным звеном в процессе соединения науки с производством. Им требуется основательная научно -техническая подготовка.

Наконец, в-третьих, это - инженеры-системотехники или, как их часто называют, "системщики широкого профиля", задача которых - организация и управление сложной инженерной деятельностью, комплексное исследование и системное проектирование. Подготовка такого инженера-организатора и универсалиста требует самой широкой системной и методологической направленности и междисциплинарности. Для такого рода инженеров особенно важно междисциплинарное и общегуманитарное образование, в котором ведущую роль могла бы сыграть философия науки и техники.

2. Специфика технического знания.

Поскольку техническое знание ближе всего естественнонаучному, то его специфику легче всего усмотреть на основе их сравнения. Техника большую часть своей истории была мало связана с наукой, люди могли делать, и делали устройства не понимая, почему они так работают. В то же время естествознание до XIX века решало в основном свои собственные задачи, хотя часто отталкивались от техники. Инженеры, провозглашая ориентацию на науку, в своей практической деятельности руководствовались ею незначительно. После многих веков такой «автономии» наука и техника соединяются в XVIII веке в начале научной революции. Однако лишь к XIX в. это единство приносит первые плоды; в XX в. наука стала главным источником новых видов техники и технологий.

Выделяются следующие подходы к рассмотрению соотношения науки и техники:

(1) техника рассматривается как прикладная наука – линейная модель (до сер. ХХ в.);

(2) процессы развития науки и техники рассматриваются как автономные, но скоординированные процессы (эволюционная модель);

(3) наука развивалась, ориентируясь на развитие технических аппаратов и инструментов (техника «ведет» науку);

Наиболее взвешенный подход: до конца XIX в. регулярного применения научных знаний в технической практике не было, но оно характерно для современных технических наук. В настоящее время происходит "сциентизация техники" и "технизация науки".

Сегодня все большее число философов техники придерживаются точки зрения, что технические и естественные науки должны рассматриваться как равноправные научные дисциплины. Каждая техническая наука - это отдельная и относительно автономная дисциплина, обладающая рядом особенностей. Технические науки - часть науки и, хотя они не должны далеко отрываться от технической практики, но не совпадают с ней.

В целом складывается следующая классификация наук : гуманитарные, естественные, математические, технические.

Технические науки так или иначе связаны со всеми, но наиболее близки естественным, и в первую очередь, физическим. Технические и естественные науки имеют одну и ту же предметную область инструментально измеримых явлений. Хотя они могут исследовать одни и те же объекты, но проводят исследование этих объектов различным образом. Сравним разные точки зрения на соотношение технических и естественных наук:

1.Технические науки тесно связаны с естественными и могут рассматриваться в качестве прикладных по отношению к последним. Тогда выделяется следующая последовательность исследований: теоретические (фундаментальные) – прикладные исследования-разработки (переводящие результаты прикладных наук в форму технологических процессов и конструкций). Технические знания могут тяготеть как в сторону теоретических знаний, так и в сторону разработок ().

2. Техническое знание существенно отличается от естественнонаучного, так как оно всегда связано с «целевой направленностью» технических объектов: технический объект является не естественным, а искусственным , созданным для определенной цели, его строение и функционирование служит этой цели (;) . Задача различных разделов естествознания (физика, химия, биология) – получить информацию о свойствах, причинных связей, структурных образований и законах движения материальных объектов. Структура же технических устройств и их функции должны быть известны до их реализации в виде материальных объектов. Рост технических знаний заключается в расширении конструктивных возможностей человека, техническое творчество в отличие от научного состоит не в открытии того, что существует, а в конструировании того, чего еще не было

3. В современных условиях технические явления в экспериментальном оборудовании естественных наук играют решающую роль, а большинство физических экспериментов является искусственно созданными ситуациями. Объекты технических наук представляют собой своеобразный синтез "естественного" и "искусственного". Искусственность объектов технических наук заключается в том, что они являются продуктами сознательной целенаправленной человеческой деятельности. Их естественность обнаруживается прежде всего в том, что все искусственные объекты в конечном итоге создаются из естественного (природного) материала. С этой точки зрения естественнонаучные эксперименты являются артефактами, а технические процессы - фактически видоизмененными природными процессами. Осуществление эксперимента - это деятельность по производству технических эффектов и может быть отчасти квалифицирована как инженерная, т. е. как конструирование машин, как попытка создать искусственные процессы и состояния, однако с целью получения новых научных знаний о природе или подтверждения научных законов, а не исследования закономерностей функционирования и создания самих технических устройств ().

В целом, соединяя разные точки зрения можно констатировать факт, что физический эксперимент часто имеет инженерный характер, а современная инженерная деятельность была в значительной степени видоизменена под влиянием развитого в науке Нового времени мысленного эксперимента. Физические науки открыты для применения в инженерии, а технические устройства могут быть использованы для экспериментов в физике. Характерной особенностью технических знаний является то, что они связаны с процессом интеллектуального конструирования, обслуживают нужды материальной конструктивной деятельности человека, выявляя методы решения конструктивных задач, приемы, процедуры создания технических объектов.

Технические науки к началу ХХ столетия составили сложную иерархическую систему знаний - от весьма систематических наук до собрания правил в инженерных руководствах. Некоторые из них строились непосредственно на естествознании (например, сопротивление материалов и гидравлика) и часто рассматривались в качестве особой отрасли физики, другие (как кинематика механизмов) развивались из непосредственной инженерной практики. И в одном, и в другом случае инженеры заимствовали как теоретические и экспериментальные методы науки, так и многие ценности и институты, связанными с их использованием. К началу ХХ столетия технические науки, выросшие из практики, приняли качество подлинной науки , признаками которой являются:

систематическая организация знаний ,

выделение классов фундаментальных и прикладных исследований .

опора на эксперимент

построение математизированных теорий

Таким образом, естественные и технические науки - равноправные партнеры. Они тесно связаны как в генетическом аспекте, так и в процессах своего функционирования. Именно из естественных наук в технические были транслированы первые исходные теоретические положения, способы представления объектов исследования и проектирования, основные понятия, а также был заимствован самый идеал научности, установка на теоретическую организацию научно-технических знаний, на построение идеальных моделей, математизацию. В то же время нельзя не видеть, что в технических науках все заимствованные из естествознания элементы претерпели существенную трансформацию, в результате чего и возник новый тип организации теоретического знания. Кроме того, технические науки со своей стороны в значительной степени стимулируют развитие естественных наук, оказывая на них обратное воздействие. В настоящее время технические науки тесно связаны не только с естественными, но и с гуманитарными общественными (например, экономикой, социологией, психологией и т. п.).

В технических науках выделяют два вида исследований: прикладные и фундаментальные. Прикладное исследование - это такое исследование, результаты которого адресованы производителям и заказчикам и которое направляется нуждами или желаниями этих клиентов, фундаментальное - адресовано другим членам научного сообщества. В современной технике велика роль как теоретической, так и прикладной компоненты, в союзе с творчеством. Для современной инженерной деятельности требуются не только краткосрочные исследования, направленные на решение специальных задач, но и широкая долговременная программа фундаментальных исследований в лабораториях и институтах, специально предназначенных для развития технических наук. Вполне правомерно сегодня говорить и о фундаментальном промышленном исследовании.

Поэтому наряду с естественнонаучными теориями ныне существует и техническая теория , которая не только объясняет реальность, но и способствует ее созданию, расширению бытия за счет нового технического мира. В сферу технической теории входит: прогнозирование развития техники и связанных с ней наук; научные законы, технические правила и нормы. Но техническая теория отличается от физической тем, что не может использовать идеализацию, в той степени, как это делается в физике. Таким образом, техническая теория имеет дело с более сложной реальностью, поскольку не может не учитывать сложное взаимодействие физических факторов, имеющих место в машине. Техническая теория является менее абстрактной и идеализированной, она более тесно связана с реальным миром инженерии.

Технические теории в свою очередь оказывают большое обратное влияние на физическую науку и даже в определенном смысле на всю физическую картину мира. Например, (по сути, - техническая) теория упругости была генетической основой модели эфира, а гидродинамика - вихревых теорий материи.

Специфика технической теории состоит в том, что она ориентирована на конструирование технических систем. Научные знания и законы, полученные естественнонаучной теорией, требуют еще длительной "доводки" для применения их к решению практических инженерных задач, в чем и состоит одна из функций технической теории.

Теоретические знания в технических науках должны быть обязательно доведены до уровня практических инженерных рекомендаций . Поэтому в технической теории важную роль играет разработка особых операций перенесения теоретических результатов в область инженерной практики, установление четкого соответствия между сферой абстрактных объектов технической теории и конструктивными элементами реальных технических систем, что соответствует фактически теоретическому и эмпирическому уровням знания.

В технической теории выделяют эмпирический и теоретический уровни:

Эмпирический уровень технической теории образуют конструктивно-технические и технологические знания , являющиеся результатом обобщения практического опыта при проектировании, изготовлении, отладке и т. д. технических систем. Это - эвристические методы и приемы, разработанные в самой инженерной практике, но рассмотренные в качестве эмпирического базиса технической теории.

Конструктивно-технические знания преимущественно ориентированы на описание строения (или конструкции) технических систем, представляющих собой совокупность элементов, имеющих определенную форму, свойства и способ соединения. Они включают также знания о технических процессах и параметрах функционирования этих систем. Технологические знания фиксируют методы создания технических систем и принципы их использования.

Теоретический уровень научно-технического знания включает в себя три основные уровня, или слоя, теоретических схем : функциональные, поточные и структурные.

Функциональная схема фиксирует общее представление о технической системе, независимо от способа ее реализации, и является результатом идеализации технической системы на основе принципов определенной технической теории. Функциональные схемы совпадают для целого класса технических систем. Блоки этой схемы фиксируют только те свойства элементов технической системы, ради которых они включены в нее для выполнения общей цели.

Поточная схема, или схема функционирования, описывает естественные процессы, протекающие в технической системе и связывающие ее элементы в единое целое. Блоки таких схем отражают различные действия, выполняемые над естественным процессом элементами технической системы в ходе ее функционирования. Такие схемы строятся исходя из естественнонаучных (например, физических) представлений.

Структурная схема технической системы фиксирует те узловые точки, на которые замыкаются потоки (процессы функционирования). Это могут быть единицы оборудования, детали или даже целые технические комплексы, представляющие собой конструктивные элементы различного уровня, входящие в данную техническую систему, которые могут отличаться по принципу действия, техническому исполнению и ряду других характеристик.

Таким образом современное техническое знание представляет собой сложную систему взаимодействующих элементов теоретического, эмпирического и прикладного уровней, тесно связанную с системами знаний других наук, а также с широкой сферой социального, гуманитарного, обыденного знания.

3. Закономерности развития технических систем.

Мы уже не раз обращались к закономерностям развития тех или иных систем. Технические системы не являются исключением и в их развитии также можно усмотреть определенные устойчивые, повторяющиеся отношения, которые можно рассматривать в качестве закономерных. Развитие технических систем обычно рассматривается с разных точек зрения. Мы выбираем подход, основанный на учете законов диалектики и на обобщении эмпирических данных развития техники.

Cформулируем ряд требований к законам развития технических систем, которые позволяют выявить среди бесчисленного множества разных отношений - действительно существенные, устойчивые, повторяющиеся.

1.Законы развития технических систем должны выражать действительное развитие техники и, следовательно, должны выявляться и подтверждаться на базе достаточно представительного объема патентной и технической информации, глубокого исследования истории развития различных технических систем.

2. Закон развития – отношение, существенное для развития, и, следовательно, он должен быть выявлен и подтвержден на базе изобретений достаточно высокого уровня (не ниже третьего), так как изобретение низших уровней практически не меняют (или мало меняют) исходную систему и не могут служить инструментом развития.

3. Закон развития технических систем образуют систему, для которых надсистема - законы диалектики, поэтому они не должны противоречить последним. "Внутренние" противоречия между выявленными в соответствии с предыдущими требованиями законами (закономерностями) - должны указывать на наличие еще каких-то, пока не ясных закономерностей, "регулирующих" отношение выявленных законов.

4. Законы развития технических систем должны быть инструментальны, то есть помогать находить новые конкретные инструменты решения задач, прогнозирования развития т. п. и обеспечивать получение на их основе конкретных выводов и рекомендаций.

5. Каждый выявленный закон должен допускать возможность его проверки на практике по материалам патентного фонда и при решении практических задач и проблем.

6. Выявленные законы и закономерности должны иметь "открытый" вид, то есть допускать дальнейшее совершенствование по мере развития техники и накопления новых патентных материалов.

Первая система законов развития технических систем, удовлетворяющая приведенным выше требованиям, была разработана в начале семидесятых годов. В настоящее время продолжается работа по выявлению, изучению и уточнению законов развития технических систем, отработка их применения. Сегодня ясно, что знание законов развития технических систем позволяет не только решать имеющиеся задачи, но и прогнозировать появление новых задач, прогнозировать развитие техники гораздо точнее, чем традиционные методы прогнозирования.

Этапы развития технических систем.

В XIX веке были установлены некоторые общие закономерности развития различных биологических систем: рост колоний бактерий, популяции насекомых, вес развивающегося плода и т. п. в зависимости от времени. В двадцатых годах XX столетия было показано, что аналогичные этапы проходят в своем развитии и различные технические системы. Кривые, построенные в осях координат, где по вертикали откладывали численные значения одной из главных эксплуатационных характеристик системы (например, скорость для самолета, мощность для электрогенератора и т. п.), а по горизонтали - "возраст" технической системы или затраты на ее развитие, получили название S-образных (по внешнему виду кривой)

Однако необходимо учитывать, что такая кривая – определенная идеализация.

S- образные кривые являются скорее иллюстрацией качественного развития технических систем.

1 этап - "рождение" и "детство" технической системы.

Новая техническая система появляется на определенном уровне развития науки и техники, когда выполнены два главных условия: есть потребность в системе и имеется возможности ее реализации. Условия эти выполняются, как правило, не одновременно и обычно одно стимулирует появление другого: осознанная обществом потребность направляет усилия ученых и инженеров на ее реализацию, либо уже созданная система открывает новые возможности исполнения.

Обстоятельство рождения новой технической системы определяются уровнем ее новизны .

Наибольшей новизной обладает пионерная система, не имеющая аналогов, созданию которой предшествуют многолетние мечты и чаяния человечества, отраженные в сказках (самолет, телевизор, радио и т. д.), неоднократные научные попытки, связанные с тем, что развитие науки и техники еще не достигло требуемого для ее создания уровня.

2 этап – период интенсивного развития технической системы. Основным содержанием этого этапа является быстрое, лавинообразное, напоминающее цепную реакцию, развитие системы.

Характерной чертой данного этапа развития становится активная экспансия новой системы - она" вытесняет" другие, устаревшие системы из экологических ниш, порождает множество модификаций и разновидностей, приспособленных для разных условий.

Главной движущей силой развития на втором этапе становится общественная потребность, которая проявляется в виде определенного рода претензий к системе.

3 – 4 этапы - "старость" и "смерть" технической системы.

Основным содержанием этапа является стабилизация параметров системы. Небольшой прирост их еще наблюдается в начале этапа, но в дальнейшем сходит на "нет" несмотря на то, что вложения сил и средств растут. Резко увеличивается сложность, наукоемкость системы, даже небольшие увеличения параметров требует, как правило, очень серьезных исследований. Вместе с тем экономичность системы остается еще высокой, потому что даже небольшое усовершенствование, помноженное на массовый выпуск, оказывается эффективным.

Попытки совершенствования системы, не считаясь с затратами, приводят к падению ее эффективности из-за непропорционального достигаемому эффекту роста стоимости и сложности. В конце концов, старая, отжившая система "умирает", заменяется принципиально новой, более прогрессивной, обладающей новыми возможности для дальнейшего развития.

В целом для технических систем выделены 7 закономерностей их развития.

Особенности развития сложных систем.

1. Каждая из подсистем, входящих в систему, рассматриваемых по отдельности, в своем развитии проходит все три этапа, иллюстрируемых S – образной кривой.

В целом для сложной системы S – образная кривая является интегральной, состоящей из пучка отдельных кривых для каждой из подсистем. Развитие системы обычно лимитирует самая "слабая" ее подсистема, ресурсы которой исчерпываются первыми (так, скорость эскадры равна скорости самого тихоходного ее корабля). Исчерпавшая свои ресурсы подсистема становится тормозом для всей системы, и дальнейшее развитие возможно только после замены "загнувшейся" подсистемы.

Пример:

В развитии самолета было несколько таких "загибов". Первый – в двадцатых годах, когда исчерпала возможности развития аэродинамическая концепция самолета – стоечного или подкосного биплана с неубирающимися шасси, открытой кабиной летчика. Новая концепция (моноплан с убирающимся шасси, с закрытой кабиной и винтом регулируемого шага) позволила резко повысить скорость полета, но в сороковых годах достигла нового предела – неэффективности воздушного винта при скорости 700 километров в час. Этот предел был связан с несовершенством конструкции крыла и был преодолен в конце сороковых годов переходом к стреловидному крылу.

2. Вытеснение человека из технической среды.

В процессе развития технической системы происходит поэтапное вытеснение из нее человека, то есть техника постепенно берет на себя функции, ранее выполняющиеся человеком, тем самым приближаясь к полной (без участия человека) системе.

Функция ориентирования деталей при штамповке, которую легко выполнит необученный работник, сложна для робота. С другой стороны, машина может использовать "машинные" преимущества - высокую скорость и точность движения, развивать большие усилия, работать в средах, недоступных для человека. Поэтому вытеснение человека из технической системы очень часто связано с переходом к новым принципам действия, новым технологиям .

3. Увеличение степени идеальности технических систем

Повышение идеальности технических систем проявляется в росте относительных параметров (характеристик), то есть отношение полезных характеристик (мощности, усиления, производительности, точности, надежности и других) к вредным (потери, помехи, количество брака и т. д.) или конструктивным (вес, размеры, трудоемкость изготовления и т. д.).

4. Развертывание – свертывание технических систем

Повышение идеальности технических систем осуществляется путем развертывания – увеличение количества и качества выполняемых функций за счет усложнения системы, и свертывания – упрощения системы при сохранении или росте полезных функций (ср. с диалектическим законом перехода количества в качество).

На всех этапах развития процессы развертывания и свертывания могут чередоваться, приходя на смену друг другу, частично или полностью перекрываться, действуя параллельно, то есть при общем развертывании системы отдельные ее подсистемы могут свертываться и наоборот.

Развитие вычислительной техники: от арифмометров – к гигантским ЭВМ (развертывание) – к современным компактным компьютерам (свертывание).

5. Повышение динамичности и управляемости технических систем.

В процессе развития технической системы происходит повышение ее динамичности и управляемости, то есть способности к целенаправленным изменениям, обеспечивающим улучшение адаптации, приспособление системы к меняющейся, взаимодействующей с ней среде.

В переводе с латыни "динамизм "– богатство движения, насыщенность действием. Повышение динамичности дает системе возможность сохранять высокую степень идеальности при значительных изменениях условий, требований и режимов работы.

Обрабатывающий центр, современная ЭВМ. Переход к системам с изменяющимися элементами.

6. Переход технической системы на микроуровень. Использование полей.

Развитие технических систем идет в направлении все большего использования глубинных уровней строения материи (вещества) - переход на микроуровень и использование различных полей.

Пример: От электронных ламп – к современным интегральным микросхемам

7. Согласование - рассогласование различных систем.

В процессе развития технической системы на первых этапах происходит последовательное согласование системы и ее подсистем между собой и надсистемой, заключающееся в приведении основных параметров к определенным значениям, обеспечивающим наилучшее функционирование. На последующих этапах происходит рассогласование - целенаправленное изменение отдельных параметров, обеспечивающее получение дополнительного полезного эффекта (сверхэффекта) . Конечным этапом в этом цикле развития является динамическое согласование – рассогласование , при котором параметры системы изменяются управляемо (а впоследствии и самоуправляемо) так, чтобы принимать оптимальные значения в зависимости от условий работы.

Согласование проявляется уже на этапе создания системы, когда идет подбор необходимых систем, образующих функциональную цепочку, системообразующих связей.

К подсистемам, помимо требования обеспечения минимальной работоспособности, предъявляется требование совместимости друг с другом, поэтому случается, что подсистема, наилучшим образом выполняющая свою функцию вне системы, оказывается не лучшей для создаваемой системы.

Процесс согласования – рассогласования сопровождается повышением идеальности системы как за счет уменьшения функций расплаты, так и за счет повышения качества полезных функций.

Пример: В согласованную систему электроснабжения вводится элемент рассогласования – «электрический предохранитель», позволяющий вывести подсистему с коротким замыканием из общей цепи.

ОСОБЕННОСТИ СОВМЕСТНОГО ДЕЙСТВИЯ ЗАКОНОВ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ

Выделения отдельных, изолированных друг от друга законов развития технических систем является, вообще говоря. является грубым упрощением. На самом деле законы действуют в совокупности, обеспечивая эффективное, всестороннее развитие системы. Следствие одного закона, нередко тесно переплетаются со следствием другого, часто речь идет об одной и той же закономерности, рассмотренной с разных сторон.

ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ

Важнейшим направлением работ по совершенствованию техники является прогнозирование ее развития, позволяющее сформулировать цели, рационально определить параметры будущих изделий, спланировать работу по их достижению. Имея достоверный прогноз, предприятие получает возможность обоснованно и эффективно оперировать капиталовложениями , формировать перспективные планы производства, подготовить задания на разработку необходимых материалов, оборудования и т. д., снизив тем самым время технологической подготовки производства и степень риска по освоению новой техники.

Поскольку развитие технических систем осуществляется по объективным законам развития техники, логично использовать выявленные законы для прогнозирования развития. При этом такой прогноз должен дать не только характеристику будущей технической системы, но и указать пути ее развития, за исключением случаев, когда существующий уровень науки и техники не позволяет это сделать из-за отсутствия материалов, технологий энергетических ресурсов, необходимых знаний.