Солнечная энергия страны. Примеры использования энергии Солнца на Земле. Солнечные электростанции. Солнечная энергетика. Солнечные электростанции башенного типа

11.10.2019

Солнечная энергия

Параметры солнечного излучения

Прежде всего необходимо оценить потенциальные энергетические возможности солнечного излучения. Здесь наибольшее значение имеет его общая удельная мощность у поверхности Земли и распределение этой мощности по разным диапазонам излучения.

Мощность солнечного излучения

Мощность излучения Солнца, находящегося в зените, у поверхности Земли оценивается примерно в 1350 Вт/м2. Простой расчёт показывает, что для получения мощности 10 кВт необходимо собрать солнечное излучение с площади всего лишь 7.5 м2. Но это — в ясный полдень в тропической зоне высоко в горах, где атмосфера разрежена и кристально прозрачна. Как только Солнце начинает склоняться к горизонту, путь его лучей сквозь атмосферу увеличивается, соответственно, возрастают и потери на этом пути. Присутствие в атмосфере пыли или паров воды, даже в неощутимых без специальных приборов количествах, ещё более снижает поток энергии. Однако и в средней полосе в летний полдень на каждый квадратный метр, ориентированный перпендикулярно солнечным лучам, приходится поток солнечной энергии мощностью примерно 1 кВт.

Конечно, даже небольшая облачность резко уменьшает энергию, достигающую поверхности, особенно в инфракрасном (тепловом) диапазоне. Тем не менее, часть энергии всё равно проникает сквозь тучи. В средней полосе при сильной облачности в полдень мощность солнечного излучения, дошедшего до поверхности Земли, оценивается примерно в 100 Вт/м2 и лишь в редких случаях при особо плотной облачности может опускаться ниже этой величины. Очевидно, что в таких условиях для получения 10 кВт необходимо полностью, без потерь и отражения, собрать солнечное излучение уже не с 7.5 м2 земной поверхности, а с целой сотки (100 м2).

В таблице приведены краткие усреднённые данные по энергии солнечного излучения для некоторых городов России с учётом климатических условий (частоты и силы облачности) на единицу горизонтальной поверхности. Детализация этих данных, дополнительные данные для ориентаций панелей, отличных от горизонтальной, а также данные для других областей России и стран бывшего СССР приведены на отдельной странице .

Город

месячный минимум
(декабрь)

месячный максимум
(июнь или июль)

суммарно за год

Архангельск

4 МДж / м 2 (1.1 кВт·ч / м 2)

575 МДж / м 2 (159.7 кВт·ч / м 2)

3.06 ГДж / м 2 (850 кВт·ч / м 2)

Астрахань

95.8 МДж / м 2 (26.6 кВт·ч / м 2)

755.6 МДж / м 2 (209.9 кВт·ч / м 2)

4.94 ГДж / м 2 (1371 кВт·ч / м 2)

Владивосток

208.1 МДж / м 2 (57.8 кВт·ч / м 2)

518.0 МДж / м 2 (143.9 кВт·ч / м 2)

4.64 ГДж / м 2 (1289.5 кВт·ч / м 2)

Екатеринбург

46 МДж / м 2 (12.8 кВт·ч / м 2)

615 МДж / м 2 (170.8 кВт·ч / м 2)

3.76 ГДж / м 2 (1045 кВт·ч / м 2)

Москва

42.1 МДж / м 2 (11.7 кВт·ч / м 2)

600.1 МДж / м 2 (166.7 кВт·ч / м 2)

3.67 ГДж / м 2 (1020.7 кВт·ч / м 2)

Новосибирск

638 МДж / м 2 (177.2 кВт·ч / м 2)

4.00 ГДж / м 2 (1110 кВт·ч / м 2)

Омск

56 МДж / м 2 (15.6 кВт·ч / м 2)

640 МДж / м 2 (177.8 кВт·ч / м 2)

4.01 ГДж / м 2 (1113 кВт·ч / м 2)

Петрозаводск

8.6 МДж / м 2 (2.4 кВт·ч / м 2)

601.6 МДж / м 2 (167.1 кВт·ч / м 2)

3.10 ГДж / м 2 (860.0 кВт·ч / м 2)

Петропавловск-Камчатский

83.9 МДж / м 2 (23.3 кВт·ч / м 2)

560.9 МДж / м 2 (155.8 кВт·ч / м 2)

3.95 ГДж / м 2 (1098.4 кВт·ч / м 2)

Ростов-на-Дону

80 МДж / м 2 (22.2 кВт·ч / м 2)

678 МДж / м 2 (188.3 кВт·ч / м 2)

4.60 ГДж / м 2 (1278 кВт·ч / м 2)

Санкт-Петербург

8 МДж / м 2 (2.2 кВт·ч / м 2)

578 МДж / м 2 (160.6 кВт·ч / м 2)

3.02 ГДж / м 2 (840 кВт·ч / м 2)

Сочи

124.9 МДж / м 2 (34.7 кВт·ч / м 2)

744.5 МДж / м 2 (206.8 кВт·ч / м 2)

4.91 ГДж / м 2 (1365.1 кВт·ч / м 2)

Южно-Сахалинск

150.1 МДж / м 2 (41.7 кВт·ч / м 2)

586.1 МДж / м 2 (162.8 кВт·ч / м 2)

4.56 ГДж / м 2 (1267.5 кВт·ч / м 2)

Неподвижная панель, размещённая под оптимальным углом наклона, способна воспринять в 1.2 .. 1.4 раза больше энергии по сравнению с горизонтальной, а если она будет поворачиваться вслед за Солнцем, то прибавка составит 1.4 .. 1.8 раза. В этом можно убедиться, с разбивкой по месяцам для неподвижных панелей, ориентированных на юг под разными углами наклона, и для систем, отслеживающих движение Солнца. Особенности размещения солнечных панелей более подробно обсуждаются ниже .

Прямое и рассеянное солнечное излучение

Различают рассеянное и прямое солнечное излучение. Для эффективного восприятия прямого солнечного излучения панель должна быть ориентирована перпендикулярно потоку солнечного света. Для восприятия рассеянного излучения ориентация не так критична, так как оно достаточно равномерно приходит почти со всего небосвода — именно так освещается земная поверхность в пасмурные дни (по этой причине в пасмурную погоду предметы не имеют чётко оформленной тени, а вертикальные поверхности, такие как столбы и стены домов, практически не отбрасывают видимую тень).

Соотношение прямого и рассеянного излучения сильно зависит от погодных условий в разные сезоны. Например, в Москве зима пасмурная, и в январе доля рассеянного излучения превышает 90% от общей инсоляции. Но даже московским летом рассеянное излучение составляет почти половину от всей солнечной энергии, достигающей земной поверхности. В то же время в солнечном Баку и зимой, и летом доля рассеянного излучения составляет от 19 до 23% общей инсоляции, а около 4/5 солнечного излучения, соответственно, является прямым. Более подробно соотношение рассеянной и полной инсоляции для некоторых городов приведено на отдельной странице .

Распределение энергии в солнечном спектре

Солнечный спектр является практически непрерывным в крайне широком диапазоне частот — от низкочастотного радиоволнового до сверхвысокочастотного рентгеновского и гамма-излучения. Безусловно, трудно одинаково эффективно улавливать столь разные виды излучения (пожалуй, это можно осуществить лишь теоретически с помощью «идеального абсолютно чёрного тела»). Но это и не надо — во-первых, само Солнце в разных частотных диапазонах излучает с различной силой, а во-вторых, не всё, что излучило Солнце, достигает поверхности Земли — отдельные участки спектра в значительной степени поглощаются разными компонентами атмосферы — преимущественно озоновым слоем, парами воды и углекислым газом.

Поэтому нам достаточно определить те диапазоны частот, в которых наблюдается наибольший поток солнечной энергии у поверхности Земли, и использовать именно их. Традиционно солнечное и космическое излучение разделяется не по частоте, а по длине волны (это связано со слишком большими показателями степени для частот этого излучения, что весьма неудобно — видимому свету в герцах соответствует 14-й порядок). Посмотрим же зависимость распределения энергии от длины волны для солнечного излучения.

Диапазоном видимого света считается участок длин волн от 380 нм (глубокий фиолетовый) до 760 нм (глубокий красный). Всё, что имеет меньшую длину волны, обладает более высокой энергией фотонов и подразделяется на ультрафиолетовый, рентгеновский и гамма- диапазоны излучения. Невзирая на высокую энергию фотонов, самих фотонов в этих диапазонах не так уж много, поэтому общий энергетический вклад этого участка спектра весьма мал. Всё, что имеет бóльшую длину волны, обладает меньшей по сравнению с видимым светом энергией фотонов и подразделяется на инфракрасный диапазон (тепловое излучение) и различные участки радиодиапазона. Из графика видно, что в инфракрасном диапазоне Солнце излучает практически столько же энергии, как и в видимом (уровни меньше, зато диапазон шире), а вот в радиочастотном диапазоне энергия излучения очень мала.

Таким образом, с энергетической точки зрения нам достаточно ограничиться видимым и инфракрасным частотными диапазонами, а также ближним ультрафиолетом (где-то до 300 нм, более коротковолновый жёсткий ультрафиолет практически полностью поглощается в так называемом озоновом слое, обеспечивая синтез этого самого озона из атмосферного кислорода). А львиная доля солнечной энергии, достигающей поверхности Земли, сосредоточена в диапазоне длин волн от 300 до 1800 нм.

Ограничения при использовании солнечной энергии

Главные ограничения, связанные с использованием солнечной энергии, вызваны её непостоянством — солнечные установки не работают ночью и малоэффективны в пасмурную погоду. Это очевидно практически всем.

Однако есть и ещё одно обстоятельство, которое особенно актуально для наших довольно северных широт — это сезонные различия в продолжительности дня. Если для тропической и экваториальной зоны длительность дня и ночи слабо зависит от времени года, то уже на широте Москвы самый короткий день меньше самого длинного почти в 2.5 раза! Про приполярные области я уже не говорю... В результате в ясный летний день солнечная установка под Москвой может произвести энергии не меньше, чем на экваторе (солнце пониже, зато день длиннее). Однако зимой, когда потребность в энергии особенно высока, её выработка, наоборот, снизится в несколько раз. Ведь помимо короткого светового дня, лучи низкого зимнего солнца даже в полдень должны проходить гораздо более толстый слой атмосферы и потому теряют на этом пути существенно больше энергии, чем летом, когда солнце стоит высоко и лучи идут сквозь атмосферу почти отвесно (выражение «холодное зимнее солнце» имеет самый прямой физический смысл). Тем не менее, это вовсе не означает, что солнечные установки в средней полосе и даже в гораздо более северных районах совсем бесполезны — хотя зимой от них мало пользы, эато в период длинных дней, как минимум полгода между весенним и осенним равноденствиями, они вполне эффективны.

Особенно интересно применение солнечных установок для приведения в действие всё шире рас-прос-тра-ня-ю-щих-ся, но весьма «прожорливых» кондиционеров. Ведь чем сильнее светит солнце, тем жарче и тем нужнее кондиционер. Но в таких условиях и солнечные установки способны выработать больше энергии, причём эта энергия будет использована кондиционером именно «здесь и сейчас», её не надо аккумулировать и хранить! К тому же совсем необязательно преобразовывать энергию в электрическую форму — абсорбционные тепловые машины используют тепло непосредственно, а это значит, что вместо фотоэлектрических батарей можно использовать солнечные коллекторы , наиболее эффективные как раз в ясную жаркую погоду. Правда, я считаю, что кондиционеры незаменимы лишь в жарких безводных регионах и во влажном тропическом климате, а также в современных городах независимо от их месторасположения. Грамотно спроектированный и построенный загородный дом не только в средней полосе, но и на большей части юга России не нуждается в столь энергетически прожорливом, громоздком, шумном и капризном устройстве.

К сожалению, в условиях городской застройки индивидуальное использование более-менее мощных солнечных установок со сколько-нибудь заметной практической пользой возможно лишь в редких случаях особо удачного стечения обстоятельств. Впрочем, я не считаю городскую квартиру полноценным жильём, поскольку её нормальное функционирование зависит от слишком большого количества факторов, не доступных непосредственному контролю жильцов по чисто техническим причинам, а потому в случае выхода из строя на более-менее длительное время хотя бы одной из систем жизнеобеспечения современного многоквартирного дома условия там не будут приемлемы для жизни (скорее, квартиру в многоэтажке надо рассматривать как своего рода гостиничный номер, который жильцы выкупили в бессрочное пользование или арендуют у муниципалитета). Зато за городом особое внимание к солнечной энергии может быть более чем оправданным даже на маленьком участке в 6 соток.

Особенности размещения солнечных панелей

Выбор оптимальной ориентации солнечных панелей является одним из важнейших вопросов при практическом использовании солнечных установок любого типа. К сожалению, на различных сайтах, посвящённых солнечной энергии, этот аспект рассматривается очень мало, хотя пренебрежение им способно снизить эффективность панелей до неприемлемого уровня.

Дело в том, что угол падения лучей на поверхность сильно влияет на коэффициент отражения, а следовательно, на долю невоспринятой солнечной энергии. Например, для стекла при отклонении угла падения от перпендикуляра к его поверхности до 30° коэффициент отражения практически не меняется и составляет чуть менее 5%, т.е. более 95% падающего излучения проходят внутрь. Далее рост отражения становится заметным, и к 60° доля отражённого излучения увеличивается вдвое — почти до 10%. При угле падения 70° отражается около 20% излучения, а при 80° — 40%. Для большинства других веществ зависимость степени отражения от угла падения имеет примерно тот же характер.

Ещё важнее так называемая эффективная площадь панели, т.е. перекрываемое ею сечение потока излучения. Она равна реальной площади панели, умноженной на синус угла между её плоскостью и направлением потока (или, что то же самое, на косинус угла между перепендикуляром к панели и направлением потока). Поэтому, если панель перпендикулярна потоку, её эффективная площадь равна её реальной площади, если поток отклонился от перпендикуляра на 60° — половине реальной площади, а если поток параллелен панели, её эффективная площадь равна нулю. Таким образом, существенное отклонение потока от перпендикуляра к панели не только увеличивает отражение, но снижает её эффективную площадь, что обуславливает очень заметное падение выработки.

Очевидно, что для наших целей наиболее эффективна постоянная ориентация панели перпендикулярно потоку солнечных лучей. Но это потребует изменения положения панели в двух плоскостях, поскольку положение Солнца на небе зависит не только от времени суток, но и от времени года. Хотя такая система, безусловно, технически возможна, она получается весьма сложной, а потому дорогой и не слишком надёжной.

Однако вспомним, что при углах падения до 30° коэффициент отражения на границе «воздух-стекло» минимален и практически неизменен, а в течении года угол максимального подъёма Солнца над горизонтом отклоняется от среднего положения не более чем на ±23°. Эффективная площадь панели при отклонении от перпендикуляра на 23° также остаётся достаточно большой — не менее 92% от её реальной площади. Поэтому можно ориентироваться на среднегодовую высоту максимального подъёма Солнца и практически без потери эффективности ограничиться вращением лишь в одной плоскости — вокруг полярной оси Земли со скоростью 1 оборот в сутки. Угол наклона оси такого вращения относительно горизонтали равен географической широте места. Например, для Москвы, расположенной на широте 56°, ось такого вращения должна быть наклонена на север на 56° относительно поверхности (или, что то же самое, отклонена от вертикали на 34°). Такое вращение организовать уже гораздо проще, однако для безпрепятственного вращения большой панели нужно немало места. Кроме того, необходимо либо организовать скользящее соединение, позволяющее отводить от постоянно вращающейся панели всю полученную ею энергию, либо ограничиться гибкими коммуникациями с фиксированным соединением, но обеспечить автоматический возврат панели обратно в ночное время, — в противном случае не избежать перекручивания и обрыва отводящих энергию коммуникаций. Оба решения резко повышают сложность и снижают надёжность системы. При возрастании мощности панелей (а значит, их размеров и веса) технические проблемы усложняются в геометрической прогрессии.

В связи со всем вышеизложенным, практически всегда панели индивидуальных солнечных установок монтируются неподвижно, что обеспечивает относительную дешевизну и высочайшую надёжность установки. Однако здесь особенно важным становится выбор угла размещения панели. Рассмотрим эту проблему на примере Москвы .


Оранжевая линия — при отслеживании положения Солнца вращением вокруг полярной оси (т.е. параллельно земной оси); синий — неподвижная горизонтальная панель; зелёный — неподвижная вертикальная панель, ориентированная на юг; красный — неподвижная панель, наклонённая на юг под углом 40° к горизонту.

Посмотрим на диаграммы инсоляции для различных углов установки панелей. Конечно, панель, поворачивающаяся вслед за Солнцем, вне конкуренции (оранжевая линия). Однако даже в длинные летние дни её эффективность превышает эффективность неподвижных горизонтальной (синяя) и наклонённой под оптимальным углом (красная) панелей всего лишь примерно на 30%. Но в эти дни тепла и света и так хватает! А вот в наиболее энергодефицитный период с октября по февраль преимущество поворотной панели над неподвижными минимально и практически неощутимо. Правда, в это время компанию наклонной панели составляет не горизонтальная, а вертикальная панель (зелёная линия). И это не удивительно — низкие лучи зимнего солнца скользят по горизонтальной панели, но хорошо воспринимаются почти перпендикулярной им вертикальной. Поэтому в феврале, ноябре и декабре вертикальная панель по своей эффективности превосходит даже наклонную и почти не отличается от поворотной. В марте и октябре день более длинный, и поворотная панель уже начинает уверенно (хотя и не очень сильно) превосходить любые неподвижные варианты, но эффективность наклонной и вертикальной панелей практически одинакова. И лишь в период длинных дней с апреля по август горизонтальная панель по полученной энергии опережает вертикальную и приближается к наклонной, а в июне даже чуть превосходит её. Летний проигрыш вертикальной панели закономерен — ведь, скажем, день летнего равноденствия длится в Москве более 17 часов, а в передней (рабочей) полусфере вертикальной панели Солнце может находиться не более 12 часов, остальные 5 с лишним часов (почти треть светового дня!) оно находится позади неё. Если же учесть, что при углах падения более 60° доля отражённого от поверхности панели света начинает стремительно расти, а её эффективная площадь сокращается в два раза и более, то время эффективного восприятия солнечного излучения для такой панели не превышает 8 часов — то есть менее 50% от общей продолжительности дня. Именно этим объясняется факт стабилизации производительности вертикальных панелей в течении всего периода длинных дней — с марта по сентябрь. И наконец, несколько особняком стоит январь — в этом месяце производительность панелей всех ориентаций практически одинакова. Дело в том, что этот месяц в Москве очень пасмурный, и более 90% всей солнечной энергии приходится нарассеянное излучение , а для такого излучения ориентация панели не слишком важна (главное, не направить её в землю). Однако несколько солнечных дней, всё же бывающих в январе, снижают выработку горизонтальной панели на 20% по сравнению с остальными.

Какой же угол наклона выбрать? Всё зависит от того, когда именно Вам нужна солнечная энергия. Если Вы хотите пользоваться ею только в тёплый период (скажем, на даче), то стоит выбрать так называемый «оптимальный» угол наклона, перпендикулярный к среднему положению Солнца в период между весенним и осенним равноденствиями. Он примерно на 10° .. 15° меньше географической широты и для Москвы составляет 40° .. 45°. Если же энергия Вам нужна круглогодично, то следует «выжимать» максимум именно в энергодефицитные зимние месяцы, а значит, надо ориентироваться на среднее положение Солнца между осенним и весенним равноденствиями и размещать панели ближе к вертикали — на 5° .. 15° больше географической широты (для Москвы это будет 60° .. 70°). Если же по архитектурным или конструктивным соображениям выдержать такой угол невозможно и надо выбирать между углом наклона в 40° и меньше или вертикальной установкой, следует предпочесть вертикальное положение. При этом «недобор» энергии в длинные летние дни не так критичен — в этот период полно естественного тепла и света, и потребность в выработке энергии обычно не так велика, как зимой и в межсезонье. Естественно, наклон панели должен быть ориентирован на юг, хотя отклонение от этого направления на 10° .. 15° к востоку или к западу мало что меняет и потому вполне допустимо.

Горизонтальное размещение солнечных панелей на всей территории России неэффективно и абсолютно неоправдано. Помимо слишком большого снижения выработки энергии в осенне-зимний период, на горизонтальных панелях интенсивно скапливается пыль, а зимой ещё и снег, и удалить их оттуда можно только с помощью специально организованной уборки (как правило, вручную). Если же наклон панели превышает 60°, то снег на её поверхности задерживается мало и обычно быстро осыпается сам по себе, а тонкий слой пыли хорошо смывается дождями.

Поскольку в последнее время цены на солнечное оборудование снижаются, может оказаться выгодным вместо единого поля солнечных панелей, ориентированного на юг, использовать два с большей суммарной мощностью , ориентированных на смежные (юго-восток и юго-запад) и даже противоположные (восток и запад) стороны света. Это обеспечит более равномерную выработку в солнечные дни и повышенную выработку в пасмурную погоду, при том, что остальное оборудование останется рассчитанным на прежнюю, относительно невысокую мощность, а потому будет более компактным и дешёвым.

И последнее. Стекло, поверхность которого не гладкая, а имеет специальный рельеф, способно гораздо более эффективно воспринимать боковой свет и передавать его на рабочие элементы солнечной панели. Наиболее оптимальным представляется волнообразный рельеф с ориентацией выступов и впадин с севера на юг (для вертикальных панелей — сверху вниз), — своеобразная линейная линза. Рифлёное стекло способно увеличить выработку неподвижной панели на 5% и более.

Традиционные типы установок для использования солнечной энергии

Время от времени появляются сообщения о строительстве очередной солнечной электростанции (СЭС) или опреснительной установки. По всему миру, от Африки до Скандинавии, применяются тепловые солнечные коллекторы и фотоэлектрические солнечные батареи. Эти методы использования солнечной энергии развиваются уже не один десяток лет, им посвящено множество сайтов в Интернете. Поэтому здесь я рассмотрю их в самых общих чертах. Впрочем, один важнейший момент в Интернете практически не освещается — это выбор конкретных параметров при создании индивидуальной системы солнечного энергоснабжения. Между тем этот вопрос не так прост, как кажется на первый взгляд. Пример выбора параметров для системы на солнечных батареях приведён на отдельной странице .

Солнечные батареи

Вообще говоря, под «солнечной батареей» можно понимать любой набор одинаковых модулей, воспринимающих солнечное излучение и объединённых в единое устройство, в том числе чисто тепловых, но традиционно этот термин закрепился именно за панелями фотоэлектрических преобразователей. Поэтому под термином «солнечная батарея» практически всегда подразумевается фотоэлектрическое устройство, непосредственно преобразующие солнечное излучение в электрический ток. Эта технология активно развивается с середины XX века. Огромным стимулом для её развития стало освоение космического пространства, где конкуренцию солнечным батареям по производимой мощности и длительности работы в настоящее время могут составить лишь малогабаритные ядерные источники энергии. За это время эффективность преобразования солнечных батарей возросла с одного-двух процентов до 17% и более в массовых относительно дешёвых моделях и свыше 42% в опытных образцах. Значительно увеличился срок службы и надёжность работы.

Достоинства солнечных батарей

Главное достоинство солнечных батарей — их предельная конструктивная простота и полное отсутствие подвижных деталей. Как следствие этого — небольшой удельный вес и неприхотливость в сочетании с высокой надёжностью, а также максимально простой монтаж и минимальные требования к обслуживанию во время эксплуатации (обычно достаточно лишь удалять с рабочей поверхности грязь по мере её накопления). Представляя собой плоские элементы малой толщины, они вполне успешно размещаются на обращённом к солнцу скате крыши или на стене дома, практически не требуя для себя какого-то дополнительного места и возведения отдельных громоздких конструкций. Единственное условие — ничто не должно затенять их в течении как можно большего времени.

Ещё одно важнейшее достоинство — это то, что энергия вырабатывается сразу в виде электричества — в наиболее универсальной и удобной на сегодняшний день форме.

К сожалению, ничто не вечно — эффективность фотоэлектрических преобразователей падает в течение срока службы. Полупроводниковые пластины, из которых обычно состоят солнечные батареи, со временем деградируют и утрачивают свои свойства, в результате и без того не слишком высокий КПД солнечных батарей становится ещё меньше. Длительное воздействие высоких температур ускоряет этот процесс. Сначала я отмечал это как недостаток фотоэлектрических батарей, тем более, что «севшие» фотоэлементы восстановить невозможно. Однако вряд ли какой-нибудь механический электрогенератор сможет продемонстрировать хотя бы 1% работоспособности всего лишь через 10 лет непрерывной работы — скорее всего он гораздо раньше потребует серьёзного ремонта из-за механического износа если не подшипников, то щёток, — а современные фотопреобразователи способны сохранять свою эффективность десятилетиями. По оптимистичным оценкам, за 25 лет КПД солнечной батареи уменьшается всего на 10%, а значит, если не вмешаются другие факторы, то даже через 100 лет сохранится почти 2/3 от первоначальной эффективности. Впрочем, для массовых коммерческих фотоэлементов на поли- и монокристаллическом кремнии честные изготовители и продавцы приводят несколько другие цифры старения — через 20 лет следует ожидать утраты до 20% эффективности (тогда теоретически через 40 лет эффективность составит 2/3 от первоначальной, сократится вдвое за 60 лет, а через 100 лет останется чуть менее 1/3 от исходной производительности). В общем, нормальный срок службы для современных фотопреобразователей составляет не менее 25 .. 30 лет, так что деградация не так критична, и гораздо важнее вовремя стирать с них пыль...

Если же батареи установить таким образом, чтобы естественное запыление практически отсутствовало либо своевременно смывалось естественными же дождями, то они смогут работать без какого-либо обслуживания в течение многих лет. Возможность столь долгой эксплуатации в необслуживаемом режиме — ещё одно важнейшее преимущество.

Наконец, солнечные батареи способны вырабатывать энергию с рассвета до заката даже в пасмурную погоду, когда тепловые солнечные коллекторы имеют температуру, лишь незначительно отличающуюся от температуры окружающего воздуха. Конечно, по сравнению с ясным солнечным днём их производительность падает во много раз, но лучше хоть что-то, чем совсем ничего! В связи с этим особенно интересны разработки батарей с максимумом преобразования энергии в тех диапазонах, где облака меньше всего поглощают солнечное излучение. Кроме того, при выборе солнечных фотопреобразователей следует обращать внимание на зависимость вырабатываемого ими напряжения от освещённости — она должна быть как можно меньшей (при снижении освещённости в первую очередь должен падать ток, а не напряжение, поскольку иначе для получения хоть какого-то полезного эффекта в пасмурные дни придётся использовать недешёвое дополнительное оборудование, принудительно повышающее напряжение до минимально достаточного для зарядки аккумуляторов и работы инверторов).

Недостатки солнечных батарей

Конечно, и недостатков у солнечных батарей немало. Помимо зависимости от погоды и времени суток, можно отметить следующее.

Невысокий КПД. Тот же солнечный коллектор при правильном выборе формы и материала поверхности способен поглотить почти всё попавшее на него солнечное излучение практически во всём спектре частот, несущих заметную энергию, — от дальнего инфракрасного до ультрафиолетового диапазона. Солнечные батареи же преобразуют энергию избирательно — для рабочего возбуждения атомов требуются определённые энергии фотонов (частоты излучения), поэтому в одних полосах частот преобразование идёт очень эффективно, а другие частотные диапазоны для них бесполезны. Кроме того, энергия уловленных ими фотонов используется квантово — её «излишки», превышающие нужный уровень, идут на вредный в данном случае нагрев материала фотопреобразователя. Во многом именно этим и объясняется их невысокий КПД.
Кстати, неудачно выбрав материал защитного покрытия, можно заметно снизить эффективность работы батареи. Дело усугубляется тем, что обычное стекло довольно хорошо поглощает высокоэнергетическую ультрафиолетовую часть диапазона, а для некоторых типов фотоэлементов весьма актуален именно этот диапазон, — энергия инфракрасных фотонов для них слишком мала.

Чувствительность к высокой температуре. С повышением температуры эффективность работы солнечных батарей, как и почти всех других полупроводниковых приборов, снижается. При температурах выше 100..125°С они вообще могут временно потерять работоспособность, а ещё больший нагрев грозит их необратимым повреждением. К тому же повышенная температура ускоряет деградацию фотоэлементов. Поэтому необходимо принимать все меры для снижения нагрева, неизбежного под палящими прямыми солнечными лучами. Обычно производители ограничивают номинальный диапазон рабочих температур фотоэлементов до +70°..+90°С (имеется в виду нагрев самих элементов, а температура окружающего воздуха, естественно, должна быть гораздо ниже).
Дополнительно осложняет ситуацию то, что чувствительная поверхность довольно хрупких фотоэлементов часто закрывается защитным стеклом или прозрачным пластиком. Если между защитным покровом и поверхностью фотоэлемента останется воздушная прослойка, то образуется своеобразный «парник», усугубляющий перегрев. Правда, увеличив расстояние между защитным стеклом и поверхностью фотоэлемента и соединив сверху и снизу эту полость с атмосферой, можно организовать конвекционный поток воздуха, естественным образом охлаждающий фотоэлементы. Однако на ярком солнце и при высокой температуре наружного воздуха этого может оказаться недостаточно, к тому же такой метод способствует ускоренному запылению рабочей поверхности фотоэлементов. Поэтому солнечная батарея даже не очень больших размеров может потребовать специальной системы охлаждения. Справедливости ради надо сказать, что подобные системы обычно легко автоматизируются, а привод вентилятора или помпы потребляет лишь малую долю вырабатываемой энергии. При отсутствии яркого солнца большого нагрева нет и охлаждение вообще не требуется, так что энергия, сэкономленная на приводе системы охлаждения, может быть использована для других целей. Следует заметить, что в современных панелях заводского изготовления защитное покрытие обычно плотно прилегает к поверхности фотоэлементов и отводит тепло наружу, но в самодельных конструкциях механический контакт с защитным стеклом может привести к повреждению фотоэлемента.

Чувствительность к неравномерности засветки. Как правило, для получения на выходе батареи напряжения, более-менее удобного для использования (12, 24 и более вольт), фотоэлементы соединяются в последовательные цепочки. Ток в каждой такой цепочке, а следовательно, и её мощность, определяется самым слабым звеном — фотоэлементом с худшими характеристиками или с наименьшей освещённостью. Поэтому если хотя бы один элемент цепочки оказывается в тени, он существенно снижает выработку всей цепочки — потери несоразмерны затенению (более того, при отсутствии защитных диодов такой элемент начнёт рассеивать мощность, вырабатываемую остальными элементами!). Избежать непропорционального снижения выработки можно, лишь соединив все фотоэлементы параллельно, однако тогда на выходе батареи будет слишком большой ток при слишком малом напряжении — обычно для отдельных фотоэлементов оно составляет всего 0.5 .. 0.7 В в зависимости от их типа и величины нагрузки.

Чувствительность к загрязнениям. Даже малозаметный слой грязи на поверхности фотоэлементов или защитного стекла может поглотить существенную долю солнечного света и заметно снизить выработку энергии. В пыльном городе это потребует частой очистки поверхности солнечных батарей, особенно установленных горизонтально или с небольшим наклоном. Безусловно, такая же процедура необходима и после каждого снегопада, и после пыльной бури... Однако вдали от городов, промышленных зон, оживлённых дорог и других сильных источников пыли при угле наклона 45° и более дожди вполне способны смывать естественное запыление с поверхности панелей, «автоматически» поддерживая их в достаточно чистом состоянии. Да и снег на таком уклоне, к тому же обращённом на юг, даже в весьма морозные дни обычно долго не задерживается. Так что вдали от источников атмосферных загрязнений панели солнечных батарей могут годами успешно работать вообще без какого-либо обслуживания, было бы солнце в небе!

Наконец, последнее, но важнейшее из препятствий для широкого и повсеместного распространения фотоэлектрических солнечных батарей — их довольно высокая цена. Себестоимость элементов солнечной батареи в настоящее время составляет минимум 1$/Вт (1 кВт —1000$), и это для малоэффективных модификаций без учёта стоимости сборки и монтажа панелей, а также без учёта цены аккумуляторов, контроллеров зарядки и инверторов (преобразователей вырабатываемого низковольтного постоянного тока к бытовому или промышленному стандарту). В большинстве случаев для минимальной оценки реальных затрат эти цифры следует умножить в 3-5 раз при самостоятельной сборке из отдельных фотоэлементов и в 6-10 раз при покупке готовых комплектов оборудования (плюс стоимость монтажа).

Из всех элементов системы энергоснабжения на фотоэлектрических батареях самый короткий срок службы имеют аккумуляторы, однако производители современных необслуживаемых аккумуляторов утверждают, что в так называемом буферном режиме они проработают порядка 10 лет (или отработают традиционные 1000 циклов сильной зарядки-разрядки — если считать по одному циклу в сутки, то в таком режиме их хватит на 3 года). Отмечу, что стоимость аккумуляторов обычно составляет лишь 10-20% от общей стоимости всей системы, а стоимость инверторов и контроллеров заряда (и то, и другое — сложные электронные изделия, и потому существует некоторая вероятность их выхода из строя) — ещё меньше. Таким образом, принимая во внимание длительный срок службы и возможность работы в течении долгого времени без какого-либо обслуживания, фотопреобразователи за свою жизнь вполне могут окупиться не один раз, и не только в отдалённых районах, но и в обжитых местностях — если тарифы на электричество продолжат расти нынешними темпами!

Солнечные тепловые коллекторы

Название «солнечные коллекторы» закрепилось за устройствами, использующими непосредственный нагрев солнечным теплом, — как одиночными, так и наращиваемыми (модульными). Простейший образец теплового солнечного коллектора — чёрный водяной бак на крыше вышеупомянутого дачного душа (кстати, эффективность нагрева воды в летнем душе можно заметно повысить, соорудив вокруг бака мини-парничок хотя бы из полиэтиленовой плёнки; желательно, чтобы между плёнкой и стенками бака сверху и сбоку оставался зазор в 4-5 см).

Однако современные коллекторы мало похожи на такой бак. Обычно они представляют собой плоские конструкции из тонких зачернённых трубок, уложенных в виде решётки или змейкой. Трубки могут крепиться на зачернённом же теплопроводящем листе-подложке, который улавливает солнечное тепло, попадающее в промежутки между ними — это позволяет уменьшить общую длину трубок без потери эффективности. Для снижения теплопотерь и повышения нагрева коллектор сверху может быть закрыт листом стекла или прозрачного сотового поликарбоната, а с обратной стороны теплораспределяющего листа бесполезные потери тепла предотвращает слой теплоизоляции — получается своеобразная «теплица». По трубке движется нагреваемая вода или другой теплоноситель, который может собираться в накопительном термоизолированном баке. Движение теплоносителя происходит под действием насоса или самотёком за счёт разности плотностей теплоносителя до и после теплового коллектора. В последнем случае для более-менее эффективной циркуляции требуется тщательный выбор уклонов и сечений труб и размещение самого коллектора как можно ниже. Но обычно коллектор размещается в тех же местах, где и солнечная батарея — на солнечной стене или на солнечном склоне крыши, правда дополнительно где-то надо разместить и накопительный бак. Без такого бака при интенсивном разборе тепла (скажем, если надо наполнить ванну или принять душ) ёмкости коллектора может не хватить, и через небольшое время из крана потечёт чуть подогретая водичка.

Защитное стекло, конечно, несколько снижает эффективность коллектора, поглощая и отражая несколько процентов солнечной энергии, даже если лучи падают перпендикулярно. Когда же лучи попадают на стекло под небольшим углом к поверхности, коэффициент отражения может приближаться к 100%. Поэтому при отсутствии ветра и необходимости лишь небольшого нагрева относительно окружающего воздуха (на 5-10 градусов, скажем, для полива огорода) «открытые» конструкции могут быть более эффективны, чем «остеклённые». Но как только требуется разность температур в несколько десятков градусов или если поднимается даже не очень сильный ветер, теплопотери открытых конструкций стремительно возрастают, и защитное стекло при всех своих недостатках становится необходимостью.

Важное замечание — необходимо учитывать, что в жаркий солнечный день при отсутствии разбора вода может перегреться выше температуры кипения, поэтому в конструкции коллектора необходимо принять соответствующие меры предосторожности (предусмотреть предохранительный клапан). В открытых коллекторах без защитного стекла такого перегрева обычно можно не опасаться.

В последнее время начинают широко использоваться солнечные коллекторы на так называемых тепловых трубках (не путать с «тепловыми трубками», применяемыми для отвода тепла в системах охлаждения компьютеров!). В отличие от рассмотренной выше конструкции, здесь каждая нагреваемая металлическая трубка, по которой циркулирует теплоноситель, впаяна внутрь стеклянной трубки, а из промежутка между ними откачан воздух. Получается аналог термоса, где за счёт вакуумной теплоизоляции теплопотери уменьшаются в 20 раз и более. В результате, по утверждению производителей, при морозе в -35°С снаружи стекла, вода во внутренней металлической трубке со специальным покрытием, поглощающим максимально широкий спектр солнечного излучения, нагревается до +50..+70°С (перепад более 100°С).Эффективное поглощение в сочетании с отличной теплоизоляцией позволяют нагревать теплоноситель даже в пасмурную погоду, хотя мощность нагрева, конечно, в разы меньше, чем при ярком солнце. Ключевым моментом здесь является обеспечение сохранности вакуума в зазоре между трубками, то есть вакуумной герметичности стыка стекла и металла, в очень широком диапазоне температур, достигающем 150°С, в течение всего срока эксплуатации, составляющего многие годы. По этой причине при изготовлении таких коллекторов не обойтись без тщательного согласования коэффициентов температурного расширения стекла и металла и высокотехнологичных производственных процессов, а значит, в кустарных условиях вряд ли удастся сделать полноценную вакуумную тепловую трубку. Но более простые конструкции коллекторов без проблем изготавливаются самостоятельно, хотя, конечно, их эффективность несколько меньше, особенно зимой.

Помимо описанных выше жидкостных солнечных коллекторов, существуют и другие интересные типы конструкций: воздушные (теплоноситель — воздух, и замерзание ему не страшно), «солнечные пруды» и пр. К сожалению, большинство исследований и разработок по солнечным коллекторам посвящено именно жидкостным моделям, поэтому альтернативные виды серийно практически не производятся и сведений о них не так уж много.

Достоинства солнечных коллекторов

Важнейшее достоинство солнечных коллекторов — простота и относительная дешевизна изготовления их вполне эффективных вариантов, сочетающаяся с неприхотливостью в эксплуатации. Необходимый минимум для того, чтобы сделать коллектор своими руками — это несколько метров тонкой трубы (желательно медной тонкостенной — её можно согнуть с минимальным радиусом) и немного чёрной краски, хотя бы битумного лака. Сгибаем трубку змейкой, красим чёрной краской, размещаем в солнечном месте, подключаем к водяной магистрали, — и вот простейший солнечный коллектор уже готов! При этом змеевику легко можно придать почти любую конфигурацию и максимально использовать всё выделенное для коллектора место. Наиболее эффективным зачернением, которое можно нанести в кустарных условиях и которое к тому же очень устойчиво к высоким температурам и прямому солнечному свету, является тонкий слой сажи. Однако сажа легко стирается и смывается, потому для такого зачернения обязательно потребуется защитное стекло и специальные меры, чтобы предотвратить возможное попадание конденсата на покрытую сажей поверхность.

Другое важнейшее достоинство коллекторов заключается в том, что в отличии от солнечных батарей, они способны уловить и преобразовать в тепло до 90% попавшего на них солнечного излучения, а в самых удачных случаях — и более. Поэтому не только в ясную погоду, но и при лёгкой облачности КПД коллекторов превосходит КПД фотоэлектрических батарей. Наконец, в отличие от фотоэлектрических батарей, неравномерность засветки поверхности не вызывает непропорционального снижения эффективности коллектора — важен лишь общий (интегральный) поток излучения.

Недостатки солнечных коллекторов

Зато солнечные коллекторы более чувствительны к погоде, чем солнечные батареи. Даже на ярком солнце свежий ветер способен во много раз снизить эффективность нагрева открытого теплообменника. Защитное стекло, конечно, резко сокращает потери тепла от ветра, но в случае плотной облачности и оно бессильно. В пасмурную ветреную погоду толку от коллектора практически нет, а солнечная батарея хоть немного энергии, да вырабатывает.

Среди других недостатков солнечных коллекторов прежде всего выделю их сезонность. Достаточно коротких весенних или осенних ночных заморозков, чтобы образовавшийся в трубах нагревателя лёд создал опасность их разрыва. Конечно, это можно исключить, подогревая холодными ночами «тепличку» со змеевиком сторонним источником тепла, однако в таком случае общая энергетическая эффективность коллектора легко может стать отрицательной! Другой вариант — двухконтурный коллектор с антифризом во внешнем контуре — не потребует расхода энергии на подогрев, но будет намного сложнее одноконтурных вариантов с прямым нагревом воды как в изготовлении, так и при эксплуатации. Воздушные конструкции в принципе не могут замёрзнуть, но там есть другая проблема — низкая удельная теплоёмкость воздуха.

И всё же, пожалуй, главный недостаток солнечного коллектора заключается в том, что он является именно нагревательным прибором, причём хотя промышленно изготовленные образцы при отсутствии разбора тепла могут нагреть теплоноситель до 190..200°С, обычно достигаемая температура редко превышает 60..80°С. Поэтому использовать добытое тепло для получения существенных объёмов механической работы или электрической энергии весьма затруднительно. Ведь даже для работы самой низкотемпературной паро-водяной турбины (например той, которую в своё время описал В.А.Зысин) необходимо перегреть воду хотя бы до 110°С! А непосредственно в виде тепла энергия, как известно, долго не хранится, да и при температуре менее 100°С её обычно можно использовать лишь в горячем водоснабжении и отоплении дома. Впрочем, с учётом низкой стоимости и простоты изготовления это может быть вполне достаточной причиной для обзаведения собственным солнечным коллектором.

Справедливости ради нужно отметить, что «нормальный» рабочий цикл тепловой машины можно организовать и при температурах ниже 100°С — либо если температуру кипения понизить, снижая давление в испарительной части с помощью откачки оттуда пара, либо использовав жидкость, температура кипения которой лежит между температурой нагрева солнечного коллектора и температурой окружающего воздуха (оптимально — 50..60°С). Правда, я могу вспомнить лишь одну не экзотическую и относительно безопасную жидкость, более-менее удовлетворяющую этим условиям — это этиловый спирт, в нормальных условиях кипящий при 78°С. Очевидно, что в таком случае обязательно придётся организовывать замкнутый цикл, решая множество связанных с этим проблем. В некоторых ситуациях перспективным может быть применение двигателей с внешним нагревом (двигателей Стирлинга). Интересным в этом плане может быть и использование сплавов с эффектом памяти формы, о которых на этом сайте рассказано в статье И.В.Найгеля — им для работы достаточно температурного перепада всего в25-30°С.

Концентрация солнечной энергии

Повышение эффективности солнечного коллектора прежде всего заключается в устойчивом повышении температуры нагреваемой воды выше температуры кипения. Для этого обычно применяется концентрация солнечной энергии на коллекторе с помощью зеркал. Именно такой принцип лежит в основе большинства солнечных электростанций, различия заключаются лишь в количестве, конфигурации и размещении зеркал и коллектора, а также в методах управления зеркалами. В результате в точке фокусировки вполне возможно достижение температуры даже не в сотни, а в тысячи градусов, — при такой температуре уже может происходить прямое термическое разложение воды на водород и кислород (полученный водород можно сжигать ночью и в пасмурные дни)!

К сожалению, эффективная работа подобной установки невозможна без сложной системы управления зеркалами-концентраторами, которые должны отслеживать постоянно изменяющееся положение Солнца на небе. В противном случае уже через несколько минут точка фокусировки покинет коллектор, который в таких системах часто имеет весьма небольшие размеры, и нагрев рабочего тела прекратится. Даже использование зеркал-параболоидов решает проблему лишь частично — если их периодически не доворачивать вслед за Солнцем, то через несколько часов оно уже не будет попадать в их чашу или станет освещать лишь её край — толку от этого будет немного.

Самый простой способ концентрации солнечной энергии в «домашних» условиях — это горизонтально положить зеркало возле коллектора так, чтобы большую часть дня «солнечный зайчик» попадал на коллектор. Интересный вариант — использовать в качестве такого зеркала поверхность специально созданного возле дома водоёма, особенно если это будет не обычный водоём, а «солнечный пруд» (хотя сделать это непросто, а эффективность отражения будет гораздо меньше, чем у обычного зеркала). Хороший результат может дать создание системы вертикальных зеркал-концентраторов (эта затея обычно гораздо более хлопотная, но в некоторых случаях вполне оправданной может оказаться простая установка большого зеркала на соседней стене, если она образует с коллектором внутренний угол, — всё зависит от конфигурации и местоположения здания и коллектора).

Перенаправление солнечного излучения с помощью зеркал может повысить и выработку фотоэлектрической батареи. Но при этом возрастает её нагрев, а он может вывести батарею из строя. Поэтому в данном случае приходится ограничиваться относительно небольшим выигрышем (на несколько десятков процентов, но не в разы), и нужно тщательно контролировать температуру батареи, особенно в жаркие ясные дни! Именно из-за опасности перегрева некоторые производители фотоэлектрических батарей прямо запрещают эксплуатацию своих изделий при повышеной освещённости, созданной с помощью дополнительных отражателей.

Преобразование солнечной энергии в механическую

Традиционные типы солнечных установок не подразумевают непосредственного получения механической работы. К солнечной батарее на фотопреобразователях для этого надо подключить электродвигатель, а при использовании теплового солнечного коллектора перегретый пар (а для перегрева вряд ли удастся обойтись без зеркал-концентраторов) надо подать на вход паровой турбины или в цилиндры паровой машины. Коллекторы с относительно небольшим нагревом могут преобразовывать тепло в механическое движение более экзотическими способами, например с помощью актуаторов из сплавов с эффектом памяти формы .

Тем не менее, существуют и установки, предполагающее преобразование солнечного тепла в механическую работу, непосредственно заложенное в их конструкцию. Причём размеры и мощность их самые разные — это и проект огромной солнечной башни высотой в сотни метров, и скромный солнечный насос, которому самое место на дачном участке.

Солнечная энергия – это энергия, которая вырабатывается на солнце в виде тепла и света. Это один из самых возобновляемых и легкодоступных источников энергии. То, что солнечный свет и тепло доступны бесплатно, в большом количестве и не принадлежат никому, делает их одним из наиболее важных альтернативных источников энергии. Солнечная энергия использовалась людьми с древних времен – согласно легенде, великий греческий ученый Архимед использовал систему зеркал для того, чтобы сжечь неприятельский флот, осадивший Сиракузы.

Световую энергию можно использовать для преобразования в тепловую или электрическую энергию. При помощи солнечного фотоэлектрического элемента солнечное излучение преобразуется в постоянный ток, который используется для питания часов, калькуляторов или светофоров. Тепловую солнечную энергию можно использовать для питания различных устройств.

Пассивные и активные солнечные системы

В общем, в зависимости от того, как солнечная энергия собирается и используется, системы с использованием солнечной энергии можно разделить на активные и пассивные. В активных солнечных системах для преобразования солнечной энергии в тепловую используется механическое и электрическое оборудование, такое как фотоэлементы, солнечные тепловые коллекторы, насосы и вентиляторы. В пассивных солнечных системах механического оборудования нет, для преобразования солнечной энергии в тепловую энергию используются окна, стены, деревья, сама ориентация здания и другие простые методы направления и захвата солнечного света и тепла. Пассивное солнечное отопление – это отличный способ сохранения энергии и максимизации ее использования. Автомобиль в жаркий летний день является примером пассивного солнечного отопления.

Воздействие на окружающую среду

Несмотря на то, что солнечная энергия является возобновляемым ресурсом и считается одним из самых чистых источником энергии среди доступных, она все же воздействует на окружающую среду. Для получения электричества из солнечной энергии используются фотоэлементы, в которых применяется кремний, чье изготовление сопряжено с производством отходов . Неправильное управление этими материалами может привести к возникновению риска опасного воздействия на человека и окружающую среду. Для установки солнечных электростанций может потребоваться большой участок, а экранирование поверхности земли может повлиять на существующие экосистемы. Однако при преобразовании в электричество солнечная энергия не загрязняет воздух, а сама солнечная энергия на землю поступает в изобилии, особенно в жарких странах.

Будущее солнечной энергии

В будущем, благодаря новым разработкам, которые должны привести к снижению затрат и повышению эффективности, солнечные технологии будут иметь гораздо большее значение, нежели сейчас. Все больше и больше появляется зарядных устройств на солнечных батареях для мобильной техники, что на самом деле очень удобно. По всему миру все больше и больше архитекторов при строительстве используют активные и пассивные солнечные системы и учатся включить их в строительные конструкции. В некоторых местностях, с экономической точки зрения, солнечные системы горячего водоснабжения могут конкурировать с обычными системами.

Shell прогнозирует, что к 2040 году 50% мировой энергии будет поступать из возобновляемых источников. Германия и Япония благодаря хорошему финансовому стимулированию стали мировыми лидерами в области солнечной энергетики. , и, вероятно, в ближайшее время солнечные батареи будут удовлетворять более половины потребностей страны в электроэнергии. Также ожидается, что в ближайшие несколько лет миллионы семей в мире начнут использовать солнечную энергию, особенно в США и Японии.

(Просмотрели5 166 | Посмотрели сегодня 2)


Стоимость солнечных батарей за последние 35 лет уменьшилась в 100 раз Мировые АЭС. Производство атомной энергии по состоянию на 2014 год Экотехнологии, которые могут сделать мир чище. 9 современных направлений Основы ветроэнергетики. Как работает ветрогенератор?

О солнечной энергетике и перспективах ее развития ведутся споры и дискуссии уже много лет. Большинство считают солнечную энергетику – энергетикой будущего, надеждой всего человечества. Серьезные инвестиции вкладывает в строительство солнечных электростанций большое количество компаний. Солнечную энергетику стремятся развивать во многих странах мирах, считая ее главной альтернативой традиционным энергоносителям. Германия, являясь далеко не солнечной страной, стала мировым лидеров в этой сфере. Совокупная мощность СЭС Германии растет год от года. Серьезно занимаются разработками в области энергии солнца и в Китае. Согласно оптимистичному прогнозу International Energy Agency, солнечные электростанции к 2050 году смогут производить до 20-25% мировой электроэнергии.
Альтернативный взгляд на перспективы солнечных электростанций базируется на том, что затраты, которые требуются для изготовления солнечных батарей и аккумуляторных систем, в разы превышают прибыль от производимой солнечными электростанциями электроэнергии. Противники этой позиции уверяют, что все как раз наоборот. Современные солнечные батареи способны работать без новых капиталовложений десятки и даже сотни лет, произведенная ими суммарная энергия равна бесконечности. Вот почему в долгосрочной перспективе электроэнергия, полученная с использованием энергии солнца, станет не просто рентабельной, а сверхприбыльной.
Где же истина? Попробуем разобраться в этом вместе с вами, уважаемые читатели. Мы рассмотрим современные подходы в сфере солнечной энергетики и некоторые гениальнейшие идеи, которые на сегодняшний день уже реализованы. Мы попробуем установить КПД солнечных батарей, функционирующих в настоящее время, понять, почему сегодня этот КПД является довольно низким.

Эффективность солнечных батарей в России
Согласно современным исследованиям, солнечная энергия составляет порядка 1367 Ватт на 1 кв.м (солнечная постоянная). На экваторе через атмосферу до земли доходит лишь 1020 Ватт. На территории России с помощью солнечных электростанций (при условии, что КПД солнечных элементов составляет сегодня 16%) в среднем можно получить 163,2 Ватта на квадратный метр.
В с учетом погодных условий, длительности дня и ночи, а также, типа установки солнечных батарей (КПД солнечной батареи не учитывается).
Если в Москве установить квадратный километр солнечных батарей под углом в 40 градусов (что для Москвы оптимально), то годовой объем выработанной электроэнергии составит 1173*0.16 = 187.6 ГВт*ч. При цене на электроэнергию в 3 рубля за кВт/ч, условная стоимость сгенерированной электроэнергии – 561 млн. рублей.

Наиболее распространенные способы генерации электроэнергии с помощью солнца:

Солнечные тепло-электространции
Громадные зеркала таких солнечных электростанций, поворачиваясь, ловят солнце и отражают его на коллектор. Принцип функционирования таких электрогенерирующих станций основан на преобразовании тепловой энергии солнца в механическую электроэнергию термодинамической машины либо с помощью газопоршневого двигателя Стирлинга, либо с помощью нагрева воды и т.п.

В качестве примера рассмотрим электростанцию Ivanpah (мощность 392 мегаватт), в которую вложил свои средства всемогущий Google. В строительство солнечной электростанции, расположенной в калифорнийской пустыне Мохаве, вложено более двух миллиардов долларов США. На 1 кВт установленной мощности СЭС затрачено 5612 долларов. Многие полагают, что эти затраты, хотя и превышают затраты на сооружение угольных электростанций, гораздо ниже, чем затраты на строительство АЭС. Но так ли это? Во первых, на атомной электростанции, на 1 кВт ее установленной мощности расходуется от 2000 до 4000 долларов, что дешевле, чем затраты, которые пошли на строительство Ivanpah. Во вторых, годовая выработка электроэнергии солнечной электростанции – 1079 ГВт*ч, следовательно, ее среднегодовая мощность 123.1МВт. К тому же, солнечная электростанция станция способна генерировать энергию солнца только в дневные часы. Таким образом, «усредненная» стоимость строительства СЭС доходит до 17870 долларов за 1 кВт, а это довольно значительная цена. Пожалуй, дороже обошлась бы разве что выработка электричества в открытом космосе. Затраты на строительство привычных электростанций, работающих, например, на газе, в 20-40 раз ниже. При этом, в отличие от солнечных электростанций, эти электростанции могут функционировать постоянно, производя электроэнергию тогда, когда в ней есть потребность, а не только в те часы, когда светит солнце.
Но мы знаем, что современные солнечные теплоэлектростанции способны генерировать электроэнергию круглосуточно, используя для этого большой объем нагреваемого в течение всего светового дня теплоносителя. Только стоимость строительства этих станций стараются не слишком афишировать, вероятно, потому, что она является значительной. А если в стоимость проектирования и строительства солнечных электростанций включить аккумуляторы, тем более, строительство гидроаккумулирующих электростанций, то сумма возрастет до фантастических размеров.

Кремниевые солнечные батареи
Сегодня для функционирования СЭС применяются полупроводниковые фотоэлементы, которые представляют собой полупроводниковые диоды большой площади. Влетающий в pn-переход световой квант, генерирует пару электрон-дырка, при этом, на выходах фотодиода создается перепад напряжения (порядка 0,5В).
КПД кремниевой солнечной батареи - порядка 16 %. Почему же КПД столь низок? Для того чтобы сформировать электронно-дырочную пару, требуется определенная энергия. Если прилетевший световой квант обладает малой энергией, то генерации пары не произойдет. В этом случае квант света просто пройдет сквозь кремний, как сквозь обыкновенное стекло. Вот почему кремний является прозрачным для инфракрасного света далее 1.2 мкм. Если же световой квант прилетит с большей энергией, чем требуется для генерации (зеленый свет), пара образуется, но избыток энергии просто уйдет в никуда. При синем и ультрафиолетовом свете (энергия которого является очень высокой), квант может не успеть долететь до самых глубин p-n перехода.


Для того чтобы солнечный свет не отражался от поверхности солнечной батареи, на нее наносится специальное противоотражающее покрытие (такое покрытие наносят и на линзы фотообъективов). Текстуру поверхности делают неровной (в виде гребенки). В этом случае световой поток, отразившись от поверхности один раз, возвращается вновь.
КПД фотоэлементов увеличивают, комбинируя между собой фотоэлементы, на основе различных полупроводников и с разной энергией, необходимой для генерации пары электрон-дырка. Для трехступенчатых кремниевых фотоэлементов достигается КПД в 44% и даже выше. Принцип работы трехступенчатого фотоэлемента основан на том, что сначала ставится фотоэлемент, который эффективно поглощает именно синий свет, а красный и зеленый, пропускает. Второй фотоэлемент поглощает зеленый, третий – ИК. Однако трехступенчатые фотоэлементы сегодня очень дороги, поэтому, повсеместно используются более дешевые одноступенчатые фотоэлементы, которые за счет цены опережают трехступенчатые по показателю Ватт/$.
Гигантскими темпами развивает производство кремниевых фотоэлементов Китай, за счет чего стоимость одного ватта снижается. В Китае она составляет примерно 0,5 долларов за Ватт.
Основными типами кремниевых фотоэлементов являются:
Монокристаллические
Поликристаллические
КПД монокристаллических фотоэлементов, которые являются более дорогими, несколько выше (всего лишь на 1 %), чем КПД поликристаллических. Поликристаллические кремниевые фотоэлементы сегодня обеспечивают наиболее дешевую стоимость 1 Ватта генерируемой электроэнергии.
Кремниевые солнечные батареи не могут служить вечно. За 20 лет эксплуатации в условиях агрессивной среды самые совершенные из них теряют до 15-ти процентов своей первоначальной мощности. Есть основания полагать, что в дальнейшем деградациях солнечных батарей замедляется.

Кремниевый фотоэлемент и параболическое зеркало
Изобретатели во всех странах мира предпринимают всевозможные попытки увеличить экономическую рентабельность солнечных электростанций. Если, например, взять маленький эффективный кремниевый фотоэлемент и параболическое зеркало (concentrated photovoltaics), можно достичь КПД в 40 % вместо 16, при этом, зеркало гораздо дешевле, чем солнечная батарея. Но для того чтобы следить за солнцем, требуется надежная механика. Громадная зеркальная поворотная тарелка должна быть надежно укреплена и защищена от мощных ветровых порывов и агрессивных факторов окружающей среды. Вторая проблема заключается в том, что параболические зеркала не могут фокусировать рассеянный свет. Если солнце зашло даже за не плотные тучи, выработка энергии с помощью параболической системы упадет до нуля. У привычных солнечных батарей в этих условиях выработка тепловой энергии тоже серьезно снижается, но не до нуля. Солнечные батареи с параболическими зеркалами слишком дороги по установочной стоимости и затратны в обслуживании.

Круглые солнечные элементы на крышах
Американской компанией Solyndra при поддержки правительства были сконструированы солнечные фотоэлементы круглой формы. Они монтировались на крышах, выкрашенных в белый цвет. Солнечные батареи круглой формы изготавливали путем напыления проводникового слоя (в случае с Solyndra использовался Copper indium gallium (di)selenide) на стеклянные трубы. Фактическая эффективность круглых батарей составляла порядка 8,5 %, что ниже более дешевых кремниевых. Solyndra, получившая государственные гарантии по громадному кредиту, обанкротилась. В технологии, экономическая эффективность от которых была весьма сомнительной с самого начала, американская экономика вложила немалые денежные средства. «Удачное» лоббирование неэффективных технологий – это не только российское ноу хау.

Большая проблема солнечной энергетики!
Известно, что солнечные электростанции генерируют электроэнергию днем, в то время, как огромная потребность в электричестве возникает как раз таки в вечерние часы. Это значит, что без аккумуляторов солнечные электростанции не будут эффективны. В вечерний пик потребления электричества придется задействовать альтернативные (классические) источники электроэнергии. В дневные часы часть традиционных электростанций придется отключить, а часть - держать в горячем резерве на случай плохой погоды. Если над солнечной электростанцией нависнут тучи, недостающую электроэнергию должна давать резервная. В итоге, классические генерирующие мощности стоят в резерве и теряют прибыль.


Есть еще один путь. Он отражен в проекте Desertec – передача электроэнергии из Африки в Европу. С помощью ЛЭП в вечерний пик потребления электричества можно передавать электроэнергию от СЭС, которые находятся в тех районах земного шара, где в это время в разгаре солнечный день. Но этот способ до перехода на сверхпроводники требует огромных финансовых затрат, а также, всевозможных согласований между разными государствами.

Использование аккумуляторов
Мы выяснили, что в среднем стоимость одного Ватта, произведенного солнечной батареей - 0,5 доллара. В течение дня (8 часов) батарея способна сгенерировать в пределах 8-ми Вт*ч. Эту энергию необходимо сохранить до вечернего пика потребления электричества.
Литиевые аккумуляторы, разработанные в Китае, стоят приблизительно 0,4 доллара за Вт*ч, следовательно, для солнечной батареи стоимостью 0,5 доллара, на 1 Вт будут необходимы аккумуляторы стоимостью 3,2 доллара, а это в шесть раз превышает стоимость самой батареи. Если учесть, что литиевый аккумулятор рассчитан максимум на 2000 циклов заряда-разряда, что составляет от трех до шести лет, то можно сделать вывод, - литиевый аккумулятор, это чрезвычайно дорогое решение.
Самыми дешевыми аккумуляторами являются свинцово-кислотные. Оптовая цена этих далеко не самых экологичных систем, порядка 0,08 доллара за Вт*ч. Свинцово-кислотные аккумуляторы также, как и литевые, рассчитаны на 3-6 лет работы. КПД свинцового аккумулятора составляет 75 %. Четвертую часть своей энергии этот аккумулятор теряет в цикле заряд-разряд. Чтобы сохранить дневную выработку солнечной энергии понадобится приобрести свинцово-кислотные аккумуляторы на 0.64 доллара. Мы видим, что это также больше, чем стоимость самих батарей.
Для современных СЭС разработаны гидроаккумулирующие электростанции. В течение светового дня в них закачивается вода, а ночью они функционируют как обычные гидроэлектростанции. Но строительство этих электростанций (КПД 90 %) не всегда возможно и чрезвычайно дорого.
Мы можем сделать неутешительный вывод. На сегодняшний день аккумуляторы обходятся дороже, чем сами СЭС. Для крупных солнечных электростанций они не предусмотрены. По мере генерации электроэнергии, крупные солнечные электростанции продают ее в распределительные сети. В вечернее и ночное время электроэнергию вырабатывают обычные электростанции.

Энергия солнца - какова сегодня ее цена?
Возьмем, к примеру, Германию – мирового лидера в использовании солнечной энергетики. Киловатт солнечной энергии, которая генерируется (даже в дневные часы, а ведь такая электроэнергия дешевле), выкупается в этой стране по цене от 12 до 17,45 евроцентов за кВт*ч. Поскольку газовые электростанции в Германии по прежнему строятся, функционируют или находятся в горячем резерве, солнечные электростанции в этой стране фактически просто помогают экономить российский газ.
Стоимость российского газа на сегодняшний день – 450 долларов за тысячу кубометров. Из этого объема газа (КПД генерации 40%) можно выработать приблизительно 4.32 ГВт электроэнергии. Следовательно, на 1 кВт*ч электричества выработанного от солнца, российского газа экономится на сумму в 0,104 доллара или 7,87 евроцента. Вот справедливая стоимость солнечной нерегулируемой генерации. Таким образом, в настоящее время в Германии солнечная энергетика на 50 % дотируется государством. Хотя, необходимо отметить, что Германия стремительно снижает стоимость генерации электроэнергии от солнца.

Делаем выводы
Самое экономичное солнечное электричество (0,5 долларов за 1 Ватт) получают сегодня с помощью солнечных поликристаллических батарей. Все остальные способы получения электричества с помощью энергии солнца, на порядок дороже.
Проблема, которая является ключевой для солнечной энергетики, это все же не КПД солнечных батарей, не цены, и не EROEI, который теоретически бесконечен. Главная проблема заключается в удешевлении способов генерации энергии солнца, полученной в дневные часы и сбережения этой энергии для вечернего пикового потребления. Ведь в настоящее время аккумуляторные системы, срок службы которых от трех до шести лет, в разы дороже самих солнечных батарей.
Солнечная генерация в значительных масштабах рассматривается сегодня только в виде способа экономии небольшой части традиционного ископаемого топлива в дневное время. Солнечная энергетика пока не в силах полностью взять на себя нагрузку в вечерние пиковые часы энергопотребления и уменьшить число АЭС, угольных, газовых и гидроэлектростанций, которые в дневные часы должны стоять в резерве, а в вечерние, брать на себя значительную энергетическую нагрузку.
Если в результате ужесточения тарифов (при которых, например, производителям водорода и алюминия будет выгодно запускать свое электролизное производство в дневные часы) пик потребления электроэнергии сместится на дневные часы, то у энергии солнца появятся более серьезные перспективы для развития.
Стоимость солнечной генерации, которая является «нерегулируемой», несопоставима со стоимостью генерации электроэнергии на привычных электростанциях, которые могут свободно генерировать ее в любое время, когда в этом есть необходимость.
Стоимость солнечной электроэнергии не должна превышать стоимости ископаемого топлива, сэкономленного с ее помощью. Если, например, газ в Германии стоит 450 долларов, то цена солнечной генерации в этой стране не должна превышать 0,1 доллара за киловатт час, в противном случае солнечная энергетика в этой стране является убыточной. До тех пор пока ископаемое топливо будет оставаться дешевым и легкодоступным, генерация солнечной энергии является невыгодной с экономической точки зрения.
В настоящее время использование энергии солнца и дорогостоящих солнечных аккумуляторных систем является экономически оправданным только для тех регионов и объектов, где нет других возможностей подключения к электросетям. Например, на одиноко стоящей, отдаленной станции сотовой связи.
Однако, не стоит забывать следующих важных факторов, которые вселяют оптимизм при рассмотрении солнечной энергетики:
1. Стоимость ископаемого топлива неуклонно растет по мере уменьшения его запасов.
2. Разумная государственная политика делает использование солнечных электростанций выгоднее.
3. Прогресс не стоит на месте! КПД солнечных электростанций повышается, разрабатываются новые технологии в генерировании и аккумулировании электроэнергии.

Поэтому, хочется верить, через 3-5 лет можно будет написать гораздо более позитивный обзор этой отрасли энергетики!

С каждым днем количество мировых запасов угля, нефти, газа, то есть всего того, что служит нам сегодня источником энергии, уменьшается. И в скором будущем человечество придет к тому, что ископаемого топлива просто не останется. Поэтому все страны активно ищут спасение от стремительно надвигающейся на нас катастрофы. И первое средство спасения, которое приходит на ум – это, конечно, энергия солнца, которая используется людьми испокон веков для сушки одежды, освещения жилищ и приготовления пищи. Это и дало начало одному из направлений альтернативной энергетики – солнечной энергетике.

В качестве энергетического источника для солнечной энергетики используется энергия солнечного света, которую с помощью специальных конструкций преобразуют в тепловую или электрическую. По данным специалистов всего за одну неделю на земную поверхность от солнца поступает такое количество энергии, которое превосходит энергию мировых запасов всех видов топлива. И хотя темп развития данного направления альтернативной энергетики неуклонно растет, все же солнечная энергетика обладает не только достоинствами, но и недостатками.

Если к основным плюсам можно отнести общедоступность, а главное неисчерпаемость источника энергии, то к недостаткам причисляют:

  • необходимость аккумуляции получаемой от солнца энергии,
  • значительную стоимость применяемого оборудования,
  • зависимость от погодных условий и времени суток,
  • повышение температуры атмосферы над электростанциями и др.

Численные характеристики солнечного излучения

Существует такой показатель как солнечная постоянная. Его значение равняется 1367 Вт. Именно такое количество энергии приходится на 1 кв.м. планеты Земля. Вот только до поверхности земли из-за атмосферы энергии доходит примерно на 20-25% меньше. Поэтому значение солнечной энергии на метр квадратный, к примеру, на экваторе равняется 1020 Вт. А учитываю смену дня и ночи, изменение угла солнца над горизонтом, этот показатель снижается еще примерно в 3 раза.

Вот только откуда берется это самая энергия? Этим вопросом ученые впервые начали заниматься еще в 19 веке, причем версии были совершенно разные. Сегодня же в результате огромного числа исследований достоверно известно, что источником солнечной энергии является реакция превращения 4-х атомов водорода в ядро гелия. В результате этого процесса выделяется значительное количество энергии. К примеру, энергия, выделяемая при превращении 1 гр. водорода сравнима с энергией, которая выделяется при сгорании 15 т. бензина.

Преобразование солнечной энергии

Мы уже знаем, что энергию, получаемую от солнца необходимо преобразовать в какой-то другой вид. Необходимость этого возникает ввиду того, что человечество пока не имеет таких приборов, которые бы могли потреблять солнечную энергию в чистом ее виде. Поэтому были разработаны такие источники энергии как солнечный коллектор и солнечные батареи. Если первый используется для получения тепловой энергии, то вторые производят непосредственно электричество.

Существует несколько способов преобразования энергии солнца:

  • фотовольтаика;
  • термовоздушная энергетика;
  • гелиотермальная энергетика;
  • с использованием солнечных аэростатных электростанций.

Наиболее распространенным методом считается фотовольтаика. Принцип этого преобразования заключается в использовании фотоэлектрических солнечных панелей или как их еще называют солнечных батарей, посредством которых и происходит преобразование солнечной энергии в электрическую. Как правило, изготавливают такие панели из кремния, а толщина их рабочей поверхности составляет всего несколько десятых миллиметра. Разместить их можно везде, существует лишь одно условие – наличие большого количества солнечного света. Отличный вариант для установки фотопластин – крыши жилых домов и общественных зданий.

Помимо рассмотренных фотопластин для преобразования энергии солнечного излучения используют тонкопленочные панели. Отличаются они еще меньшей толщиной, что позволяет установить их где угодно, но значительный недостаток таких панелей – это низкий КПД. Именно по этой причине их монтаж будет оправдан только при больших площадях размещения. Ради шутки тонкопленочную панель можно разместить даже на корпусе ноутбука или на дамской сумочке.

В термовоздушной энергетике солнечная энергия преобразуется в энергию потока воздуха, который затем направляют на турбогенератор. А вот в случае использования солнечных аэростатных электростанций внутри аэростатного баллона происходит генерация водяного пара. Достигается этот эффект за счет нагрева солнечным светом поверхности аэростата, на которую нанесено селективно-поглощающее покрытие. Главное преимущество это метода заключается в достаточном запасе пара, которого хватает для продолжения работы электростанции в плохую погоду и ночью.

Принцип гелиотремальной энергетики заключается в нагревании поверхности, которая поглощает солнечные лучи и фокусирует их с целью последующего использования полученного тепла. Самый простой пример – это нагревание воды, которую затем можно использоваться в бытовых нуждах, например, для подачи в канализацию или батареи, экономя при этом газ или другое топливо. В промышленных масштабах энергия солнечного излучения, получаемая данным способом, преобразуется в электрическую энергию посредством тепловых машин. Строительство таких комбинированных электростанций может длиться свыше 20 лет, но темп развития солнечной энергетики не снижается, а наоборот, неукоснительно растет.

Где возможно применение солнечной энергии?

Использовать солнечную энергию можно в абсолютно различных областях – от химической промышленности до автомобилестроения, от приготовления пищи до отопления помещений. Например, использование солнечных батарей в автомобильной отрасли началось еще в 1955 году. Именно этот год ознаменовался выпуском первого автомобиля, который работал на солнечных батареях. Сегодня же выпуском подобных автомашин занимаются BMW, Toyota и другие крупнейшие компании.

В быту солнечная энергия используется для обогрева помещений, для освещения и даже для приготовления пищи. К примеру, солнечные печи из фольги и картона по инициативе ООН активно используют беженцы, которые были вынуждены покинуть свои родные места из-за тяжелой политической обстановки. Более сложные по конструкции солнечные печи используются для термообработки и плавки металлов. Одна из крупнейших таких печей находится на территории Узбекистана.

Наиболее интересными выдумками по использованию солнечной энергии можно считать:

  • Защитный чехол для телефона с фотоэлементом, являющийся одновременно и зарядкой.
  • Рюкзак с прикрепленной на нем солнечной панелью. Он позволит вам зарядить не только телефон, но и планшет и даже камеру, в общем, любую электронику, у которой есть USB-вход.
  • Солнечные Bluetooth-наушники.

А самая креативная задумка – это одежда, сшитая из специальной ткани. Пиджак, галстук и даже купальник – все это может стать не только предметом вашего гардероба, но и зарядным устройством.

Развитие альтернативной энергетики в странах СНГ

Высокими темпами альтернативная энергетика, в том числе и солнечная, развивается не только в США, Европе или Индии, но и в странах СНГ, в их число входит Россия, Казахстан, а в особенности Украина. Например, крупнейшая электростанция на солнечной энергии на территории стран бывшего Советского Союза «Перово» была построена в Крыму. Ее строительство завершилось в 2011 году. Эта электростанция стала 3-им новаторским проектом австрийской компании Activ Solar. Пиковая мощность «Перово» составляет около 100 МВт.

А в октябре того же года компанией Activ Solar была запущена еще одна солнечная электростанция «Охотниково» и также на территории Крыма. Ее мощность составила 80 МВт. «Охотниково» также получила статус крупнейшей, но уже на территории Центральной и Восточной Европы. Можно сказать, что альтернативная энергетика в Украине сделала громадный шаг на встречу безопасной и неиссякаемой энергии.

В Казахстане же ситуация выглядит немного иначе. В основном, развитие альтернативной энергетики в этой стране происходит лишь в теории. Потенциал у республики огромный, но раскрыть его полностью пока не получается. Конечно, правительство занимается этим вопросом, и даже был разработан план по развитию альтернативной энергетики в Казахстане, вот только доля энергии, получаемой от возобновляемых источников, в частности от солнца, будет составлять не более 1% в общем энергобалансе стране. К 2020 в планах запуск всего 4 солнечных электростанций, общая мощность которых будет составлять 77 МВт.

Альтернативная энергетика в России также развивается немалыми темпами. Но, как заявил заместитель министра энергетики, уклон в этой области делается в основном на дальневосточные регионы. Например, в Якутии суммарная выработка 4 солнечных электростанций, работающих в самых отдаленных северных поселках, составила более 50 тыс. кВт*ч. Это позволило сэкономить более 14 тонн дорого дизельного топлива. Еще одним примером использования солнечной энергии служит строящийся в Липецкой области многопрофильный авиационный комплекс. Электроэнергию для его работы будет вырабатывать первая СЭС, построенная также на территории Липецкой области.

Все это позволяет сделать следующий вывод: сегодня все страны, даже не самые развитые, стремятся максимально приблизиться к заветной цели: использованию альтернативных источников энергии. Ведь потребление электроэнергии растет с каждым днем, с каждым днем увеличивается количество вредных выбросов в окружающее среду. И многие уже понимают, что наше будущее и будущее нашей планеты зависит только нас.

Р.Абдуллина

Украина делает ставку на энергию Солнца

Подробнее .

«Хевел» увеличила годовой объем выпуска солнечных модулей в Новочебоксарске до 260 МВт

В России создали новый полупроводниковый материал для солнечных батарей

Группа российских ученых создала новый полупроводниковый материал без использования свинца, который может быть применен в солнечных батареях для повышения их эффективности. Об этом в 13 мая 2019 года сообщила пресс-служба одного из участников исследования Сколковского института науки и технологий (Сколтеха).


Большой интерес для использования в настоящее время представляют солнечные батареи на основе комплексных галогенидов свинца, то есть соединения свинца с элементами 17-й группы периодической таблицы Менделеева (фтором, хлором, бромом или иодом), с перовскитной структурой - напоминающей структуру минерала перовскита, кристаллы которого имеют кубическую форму. Такие батареи отличаются низкой стоимостью, простотой изготовления и высокой эффективностью преобразования света.

Массовое производство и внедрение перовскитных батарей в настоящее время ограничивается двумя факторами: низкой стабильностью комплексных галогенидов свинца и токсичностью этих соединений. Поэтому во всем мире активно ведется разработка альтернативных бессвинцовых материалов, в частности на основе галогенидов висмута и сурьмы. Однако все ранее полученные образцы имеют низкую эффективность преобразования света. Команда российских ученых доказала, что причиной является неоптимальное строение соединений висмута и сурьмы.


Физики разработали принципиально новый материал для солнечных батарей на основе перовскитоподобного комплексного бромида сурьмы (ASbBr6, где А является органическим положительно заряженным ионом). Солнечные батареи на основе этого материала показали рекордные для галогенидов сурьмы и висмута КПД преобразования света. По словам Трошина, эта работа открывает принципиально новые возможности для развития перовскитной электроники.

"Хевел" построит в Башкирии солнечную электростанцию с накопителем энергии

25 апреля 2019 года группа компаний «Хевел » сообщила, что до конца 2019 года построит в России гибридную солнечную электростанцию с промышленными накопителями энергии. Солнечная генерация общей мощностью 10 МВт будет расположена в Бурзянском районе Республики Башкортостан . Подробнее .

Найден нетоксичный способ получения нанокремния для применения в покрытиях солнечных батарей

13 февраля 2019 года стало известно о том, что ученые МГУ нашли нетоксичный способ производства кремниевых наноматериалов. При производстве кремниевых наноструктур, востребованных в разных областях промышленности , как правило, используется достаточно токсичная плавиковая кислота. Сотрудники МГУ имени М.В. Ломоносова нашли способ, как избежать ее применения. Открытие ученых МГУ может найти применение в промышленном производстве основанных на нанокремнии антиотражающих покрытий для солнечных батарей, оптических сенсоров для обнаружения различных молекул, наноконтейнеров для доставки лекарств . Исследование выполнено при поддержке Российского научного фонда (РНФ), его результаты опубликованы в международном журнале Frontiers in Chemistry. Подробнее .

В Ульяновской области построят завод по производству солнечных панелей

В январе во время рабочего визита в Китай делегация с губернатором Ульяновской области посетила предприятие технологического партнера австрийской компании Green Source для ознакомления с продукцией компании и обсуждения предстоящего строительства завода по производству солнечных панелей на территории Ульяновской области. Договоренность о строительстве такого завода была достигнута с австрийскими компаниями еще в прошлом году.

"В конце 2018 года мы договорились с австрийскими компаниями о строительстве в Ульяновской области предприятия по производству фотоэлектрических модулей для солнечных электростанций с использованием перспективной технологии", - сообщил губернатор Морозов 19 января на своей странице в фейсбуке.

2018

Четыре солнечные электростанции мощностью 100 МВт будут работать в Бурятии к 2022 году

Четыре солнечные электростанции (СЭС) общей мощностью 100 МВт будут работать в Бурятии к 2022 году. Об этом сообщил в понедельник и.о. министра по развитию транспорта , энергетики и дорожного хозяйства Алексей Назимов, выступая на заседании Совета по науке при главе Бурятии Алексее Цыденове .

Владельцам солнечных батарей на домах разрешат продавать электричество

Выкупать электроэнергию обяжут местные сбытовые компании по средней цене, пояснили в пресс-службе министерства. Ориентиром станет стоимость энергии у местных крупных электростанций. Владельцам частных домов в районах, не имеющих доступа к единой электросети России или же не включенных в ценовые зоны европейской части РФ и Урала с Сибирью (к примеру, Калининградская область и Дальний Восток) ее разрешат продавать по регулируемому ФАС тарифу. Претендовать на гарантированный выкуп энергии смогут установки не мощнее 15 кВт.

Не исключено, что владельцам ветряков и солнечных панелей в частных домах также установят налоговые льготы. Их доход от продажи лишней электроэнергии в размере до 150 тыс. руб. в год могут освободить от НДФЛ. Соответствующий вопрос рассматривается в правительстве.

Т Плюс начинает строительство крупнейших в России солнечных станций

- Развитие "зеленой" энергетики – ключевое направление работы Правительства области по освоению альтернативных видов топлива и сохранению окружающей среды. В области уже работают пять солнечных электростанций. Крупнейшая из них построена в Орске компанией "Т Плюс". С пуском второй очереди ее мощность возросла до 40 мегаватт. Солнечные электростанции действуют в Переволоцком, Грачевском, Красногвардейском, Соль-Илецком районах, – сказал Юрий Берг. – Сегодня мы делаем важный шаг вперед – начинаем строительство еще двух объектов альтернативной энергетики. Наша задача – укрепить передовые позиции Оренбургской области в развитии альтернативной энергетики. Мы эту задачу выполним, и к 2020 году мощность всех солнечных электростанций Оренбуржья составит более 200 мегаватт. Сегодня экологический аспект приобретает решающее значение для определения качества и уровня комфортности жизни человека. Это является приоритетом президентской политики. Развитие альтернативной энергетики – это взгляд в будущее, – констатировал глава региона.

2017

Итоги развития солнечной энергетики за год

Первый заместитель Министра энергетики РФ Текслер Алексей Леонидович выступил в январе 2018 года на министерском круглом столе "Инновации для трансформации энергетики: как электротранспорт/электромобили изменяют энергосистему", который прошел в рамках восьмого заседания Ассамблеи IRENA.

Алексей Текслер рассказал участникам дискуссии о развитии ВИЭ в России . По его словам, совсем недавно в России, кроме большой гидроэнергетики, не было компетенций в сфере ВИЭ и за несколько лет был сделан большой шаг вперед .

"Главный итог 2017 года, который я готов констатировать – возобновляемая энергетика в России состоялась как отрасль", - подчеркнул замглавы.

Практически с нуля в России создана своя индустрия в солнечной энергетике, от исследований до производства солнечных панелей и строительства генерирующих станций. За 2017 год было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года. В 2015-2016 годах в России были введены 130 МВт ВИЭ, а в 2017 году построено 140 МВт, из них более 100 МВт солнечные электростанции, а 35 МВт – первый крупный ветропарк , запуск которого состоится в ближайшее время.

В числе ключевых достижений Первый заместитель Министра энергетики отметил также запуск производства солнечных панелей нового поколения на основе отечественной гетероструктурной технологии. Россия стала производить модули с КПД выше 22%, которые по этому показателю входят в мировую тройку лидеров по эффективности в серийном производстве. В этом году планируется увеличить мощность производства завода со 160 МВт до 250 МВт.

Алексей Текслер выразил уверенность в том, что, как и в солнечной энергетике, в ближайшие три года будет создана индустрия ветровой энергетики . Уже за 2016-2017 гг. в российскую ветроэнергетику пришли крупные российские и иностранные инвесторы, которые взяли обязательства по развитию технологической и производственной базы в России.

В Башкортостане введена в эксплуатацию Исянгуловская солнечная электростанция

В Зианчуринском районе Республики Башкортостан осенью 2017 года введена в эксплуатацию Исянгуловская солнечная электростанция (СЭС) мощностью 9 МВт.

Инвестором и генеральным подрядчиком проекта выступают структуры группы компаний "Хевел " (совместное предприятие Группы компаний "Ренова " и АО РОСНАНО). К строительству также были привлечены местные подрядные организации. После завершения всех регламентных процедур станция начнет плановые поставки электроэнергии в сеть. Инвестиции в строительство станции составили более 1,5 млрд рублей.

В 2015-2016 гг. в Республике Башкортостан были построены и введены в эксплуатацию Бугульчанская СЭС общей мощностью 15 МВт, а также Бурибаевская СЭС мощностью 20 МВт. С момента выхода на оптовый рынок электроэнергии и мощности станции выработали более 40 ГВт*ч чистой электроэнергии.

С вводом Исянгуловской СЭС установленная мощность солнечной генерации в регионе достигла 44 МВт. Новый объект стал третьим из пяти, которые "Хевел" планирует построить в Башкортостане в ближайшие годы. Суммарная мощность всех СЭС в регионе составит 64 МВт, а общий объём инвестиций оценивается более чем в 6 млрд рублей.

Ученые нашли способ повышения эффективности солнечных батарей

Российские и швейцарские сследователи изучили влияние на структуру и производительность солнечных батарей изменения соотношения компонентов, из которых формируется светопоглощающий слой перовскитной солнечной ячейки. Результаты работы опубликованы в журнале Journal of Physical Chemistry C .

Впервые органо-неорганические перовскиты были разработали пять лет назад, но по КПД они уже обогнали наиболее распространенные и более дорогие кремниевые солнечные элементы. В структуре перовскитов находятся кристаллические соединения, в котором располагаются молекулы растворителя исходных компонентов. Растворенные компоненты, выпадая из раствора, образуют пленку, на которой растут кристаллы перовскита. Ученые выделили и описали три промежуточных соединения, которые являются кристаллосольватами одного из двух растворителей, наиболее часто используемых при создании перовскитных солнечных батарей. Для двух соединений ученые впервые установили кристаллическую структуру.

«Мы выяснили, что ключевым фактором, определяющим функциональные свойства перовскитного слоя, является образование промежуточных соединений, поскольку кристаллиты перовскита наследуют форму промежуточных соединений. Это, в свою очередь, влияет на морфологию пленки и эффективность солнечных батарей. Это особенно важно при получении тонких пленок перовскита, поскольку игольчатая или нитевидная форма кристаллов приведет к тому, что образованная пленка будет несплошной, а это значительно снизит КПД такой солнечной ячейки», - отметил руководитель исследования Алексей Тарасов.

Дополнительно авторы исследовали термическую стабильность полученных соединений и с помощью квантово-химического моделирования рассчитали энергию их образования. Также авторы выяснили, что кристаллическая структура промежуточного соединения задает форму образующихся кристаллов перовскита, что определяет структуру светопоглощающего слоя. Эта структура, в свою очередь, влияет на производительность получаемой солнечной батареи.

Исследование было проведено научными сотрудниками МГУ в сотрудничестве с учеными Курчатовского центра синхротронного излучения, Российского университета дружбы народов , СПбГУ и Федеральной политехнической школы Лозанны в Швейцарии .

Завод Вексельберга начинает выпуск солнечных батарей на экспорт

«Хевел» в Оренбургской и Астраханской областях

В октябре губернатор Астраханской области Александр Жилкин и генеральный директор ГК «Хевел» Шахрай Игорь подписали двухстороннее соглашение, предусматривающее постройку и введение в эксплуатацию трёх сетевых солнечных электростанций.

В течение двух лет на территории региона появятся мощности для выработки 135 МВт энергии с перспективами увеличения до 160 МВт. Инвестиционная стоимость проекта – 15 млрд рублей. Планируется, что уже к концу года одну электростанцию достроят и введут в эксплуатацию. СЭС принесут в казну области дополнительные налоговые поступления. По словам Игоря Шахрая, за каждые 10 МВт энергии в год будет отчисляться 100 млн рублей налогов. Гендиректор ООО «Хевел» отметил, что астраханская земля – самая солнечная на юге России . Кроме того, в регионе имеется наработанная схема для подключения к основным энергосетям. В дополнение к этому власти всячески поддерживают и стремятся развивать направление чистой энергетики в области. Всего до конца года в регионе будут введены 6 СЭС суммарной мощностью 90 МВт.

2015 год

Мировая солнечная энергетика вплотную подходит к той стадии, когда производство электроэнергии с помощью Солнца начинает окупаться обычным, не повышенным тарифом, стоимость материалов и величина необходимых инвестиций резко падают, так как технологии развиваются и начинает сказываться эффект объема (много производить дешевле, чем мало). В сравнении с 2014 годом объем выработанной энергии на основе СЭС в мире вырос на треть. На конец 2015 года совокупная установленная мощность фотоэлектрических солнечных установок в мире составила 227 ГВт, за год установленные мощности солнечных электростанций увеличились в 2 раза. Если раньше мировым лидером по развитию возобновляемой энергетики была Европа , то в прошлом году пальму первенства перехватил Китай .

Плавучий остров-панель оказался востребованным на рынке чистой энергии, многие страны взяли этот метод получения электроэнергии на вооружение. Например, в Чили , где добыча полезных ископаемых требует постоянных затрат энергии и воды: положив солнечную панель на гладь многочисленных озер, правительство удешевило добычу ископаемых и снизило углеродный след.

Плавучие панели-батареи пока что проходят испытания на шахте Лос-Бронкес, поблизости которой создан экспериментальный энергетический остров - проект «Лос Тортолас» финансируется компаниями из Великобритании и США , площадь солнечных батарей составляет пока 112 квадратных метров, чилийский министр горнодобывающей промышленности Бальдо Прокурица. В апреле Тортолас был торжественно открыт, плавучая батарея обошлась в 250 тысяч долларов , но в случае успеха площадь будет расширена до 40 гектаров.

По мнению экспертов, в Чили у солнечной энергетики огромные перспективы. В стране порядка 800 прудов, которые можно использовать для установки плавучих солнечных электростанций (СЭС). По задумке инженеров, батарею-поплавок помещают в центр водного массива, который используется для хранения «хвостов» (отходов от добычи полезных ископаемых). Таким образом достигается тройная польза:

  • тень снижает температуру воды пруда;
  • испарение воды снижается на 80%;
  • производствоудешевляется многократно, работая на энергии солнца.

Экологи аплодируют такому плану, ведь в шахте остается куда больше воды для естественного баланса, такой подход способен уменьшить региональный расход и без того дефицитной пресной воды.

С помощью этой системы Чили рационализирует потребление свежей воды в соответствии с поставленной целью усовершенствования процесса добычи полезных ископаемых и сокращения потребления пресной воды на 50% к 2030 году. Углеродный след автоматически снижается тоже за счет производства экологически чистой энергии.

Чили постепенно наращивает долю чистой энергии

Шахта Лос-Бронкес расположена в 65 км от столицы Чили на высоте 3,5 км над уровнем моря. Почти 20% энергии, которая в производится и используется в латиноамериканской стране в 2019 году - чистая. В 2013 году показатель был равен всего шести процентам, что демонстрирует уверенный рост доли зеленой энергетики в народном хозяйстве страны и ее приверженность целям Парижского климатического соглашения (2015).

Разработки инженеров из Ciel & Terre, а также финансовая помощь дали Чили возможность расширить горизонты энергетического рынка и вырваться из порочного круга, в котором электроэнергию получают путем сжигания полезных ископаемых. Плавучие солнечные панели просты в монтаже, техобслуживании и управлении. Термопластик высокой плотности, установленный под углом 12 градусов, полностью экологичен и пригоден для вторичной переработки. Плавучая СЭС не вредит природе, экономически выгодна и гибка в настройках.

По словам чилийских инженеров, это простая и доступная альтернатива наземным объектам солнечной энергетики. Это идеальный вариант для водоемких отраслей промышленности, ограниченных в потреблении воды или земельных площадях.

«Хевел» построит в Казахстане солнечную электростанцию мощностью 100 МВт

Энергия холода: "антисолнечная батарея" работает по ночам

Инженеры создали устройство, которое можно назвать солнечной батареей навыворот: оно вырабатывает ток не когда поглощает фотоны, а когда излучает их. Такой источник энергии мог бы питать различное оборудование по ночам, отдавая в космос тепло, запасённое поверхностью Земли .

Как известно, нагретые тела испускают излучение. В этом легко убедиться, поднеся руку к горячей батарее (лучше сбоку, чтобы не мешал восходящий поток тёплого воздуха). Если объект не получает из внешней среды столько же тепловой энергии, сколько излучает, он остывает. Чтобы предмет охлаждался эффективнее, нужно предоставить ему свободно обмениваться фотонами с как можно более холодной средой.

Ещё в XX веке физики теоретически рассчитали, а в последние годы экспериментально продемонстрировали эффект отрицательной освещённости. Он заключается в том, что фотодиод может вырабатывать электричество не только поглощая приходящие из внешней среды фотоны (как в обычной солнечной батарее), но и, наоборот, отдавая их и за счёт этого охлаждаясь. На этот процесс тратится энергия, запасённая в устройстве в виде тепла.

Для работы такого устройства нужна холодная среда, в которую фотоны будут уходить, не возвращаясь обратно. И такая среда у нас под рукой, вернее, над головой: это открытый космос.


Разумеется, если такой излучатель просто запустить на орбиту (и не дать ему нагреваться от Солнца, держа в тени), он быстро высветит всё своё тепло, сравняется по температуре с космическим вакуумом и перестанет вырабатывать энергию.

Однако на Земле можно обеспечить ему тепловой контакт с поверхностью планеты. Как только фотоэлемент станет холоднее окружающих тел, дефицит энергии будет восполнен за счёт теплопроводности. Благодаря этому фотоны будут всё так же исправно улетать в ледяное космическое пространство через атмосферу, которая достаточно прозрачна на длинах волн от 8 до 13  микрометров (узкая полоса в среднем инфракрасном диапазоне). Часть энергии покидающего установку излучения будет преобразовываться в электрическую.

Именно такое устройство и создали авторы новой работы. В качестве материала для фотодиода они выбрали соединение ртути, кадмия и теллура (HgCdTe). Это вещество эффективно излучает именно в нужном диапазоне длин волн. Пройдя сквозь полусферическую линзу из арсенида галлия (GaAs) и окно из феррида бария (BaFe2), фотоны попадают на параболическое зеркало, отправляющее их прямо в небо. Чтобы попасть на диод из внешней среды, излучению требуется пройти такой же путь в обратную сторону. Все эти ухищрения нужны для того, чтобы установка обменивалась фотонами практически исключительно с космосом, а энергию от Земли получала за счёт теплопроводности.

Экспериментальная установка в опытах группы Фаня генерировала 64 нановатта на квадратный метр поверхности. Разумеется, от такой мощности нельзя запитать приборы. Однако, как рассчитали авторы, теоретический предел с учётом влияния атмосферы составляет 4 ватта на квадратный метр. Это гораздо меньше, чем у современных солнечных батарей (100–200 ватт на квадратный метр), но вполне достаточно для питания некоторых устройств.

Чтобы приблизить мощность установки к этой отметке, нужно подобрать для фотодиода материал с более выраженным эффектом отрицательной освещённости. В настоящее время исследователи заняты поисками такого вещества.

2018

Рынок солнечной энергетики ЕС вырос за год на 36%

Опубликованы предварительные данные о развитии солнечной энергетики в европейских странах. По-прежнему лидирует Германия , на второе место вышла Турция, третье место досталось Нидерландам.

Согласно статистике Ассоциации солнечной энергетики SolarPower Europe, европейский рынок значительно вырос в 2018 году. В 28 странах ЕС было введено в эксплуатацию 8 ГВт солнечных электростанций – это на 36% больше, чем в 2017 году. При этом 11 стран уже перевыполнили взятые на себя обязательства по внедрению ВИЭ и вышли на уровень 2020 года. Более широкий еврорынок, включающий Турцию, Россию , Украину, Норвегию, Швейцарию, Сербию, Белоруссию, также показал рост на 11 ГВт, что на 20% больше, чем годом ранее.

Крупнейшим рынком солнечной энергетики на европейском континенте в 2018 году в очередной раз стала Германия с новыми СЭС общей мощностью 3 ГВт. Турция за счет высоких темпов развития рынка за последние два года заняла второе место (1,64 ГВт). Нидерланды, где также был установлен национальный рекорд в 1,4 ГВт введенных в строй СЭС, разместилась по итогам года на третьем месте.

По оценкам экспертов, в 2019 году отрасль вырастет еще больше – на развитие солнечной энергетики в Европе скажутся такие факторы, как отмена пошлин на китайские солнечные панели и конкурентоспособность промышленных фотоэлектрических солнечных электростанций.

Исследователи приблизили эффективность солнечной батареи к обычной

5 октября 2018 года стало известно, что исследователи приблизили эффективность солнечной батареи к обычной. Солнечная энергия считается наиболее устойчивым вариантом замены ископаемого топлива, но технологии преобразования ее в электричество должны быть очень эффективными и дешевыми. Ученые из отдела энергетических материалов Окинавского института науки и технологий считают, что они нашли формулу для изготовления недорогих высокоэффективных солнечных батарей.

Для этого профессор Яобинг Ци, руководитель исследования, выделил три условия, которые приведут технологию к введению на рынок и успешной коммерциализации. По его словам, скорость преобразования солнечного света в электричество должна быть высокой, недорогой, а также долговечной.

На октябрь 2018 года большинство коммерческих фотоэлементов, которые используются в батареях, сделаны из кристаллического кремния. Он имеет относительно низкую эффективность - около 22%. В конечном итоге это приводит к тому, что продукт оказывается для потребителя дорогим, а его единственная мотивация для покупки - это забота о природе. Японские ученые предлагают решить проблему с помощью перовскита.

SoftBank построит в Саудовской Аравии крупнейшую солнечную электростанцию

Соответствующий меморандум о намерениях подписали в Нью-Йорке наследный принц Саудовской Аравии Мухаммед бин Сальман Аль Сауд и генеральный директор SoftBank Масаеши Сон. Принц находится в с трехнедельным официальным визитом, отмечает телеканал.

Планируемая мощность каскада солнечных батарей в 200 ГВт - это в разы больше, чем у любой существующей солнечной электростанции. Для сравнения, пиковая мощность расположенной в Калифорнии Topaz Solar Farm, одной из крупнейших подобных электростанций, составляет около 550 МВт. Энергию там аккумулируют 9 млн тонкослойных фотоэлектрических модулей.

Голландский стартап Oceans of Energy, специализирующийся на разработке плавучих систем по производству возобновляемой электроэнергии, объединился с пятью крупными компаниями, чтобы построить первую в мире солнечную электростанцию, дрейфующую в открытом море. "Такие электростанции уже работают на водоемах в материковой части разных стран. Но на море их никто не строил - это чрезвычайно трудная задача. Приходится иметь дело с огромными волнами и другими разрушительными силами природы. Однако, мы убеждены, что объединив свои знания и опыт, справимся с этим проектом", - рассказал глава Oceans of Energy Аллард ван Хоекен.
По предварительным расчетам, плавучая электростанция будет на 15% эффективнее существующих установок. Выбирать наиболее подходящие солнечные модули будет Центр исследований энергетики Нидерландов (ECN). Его специалисты считают, что это для проекта можно использовать стандартные солнечные панели, которые работают и на наземных солнечных станциях. "Посмотрим, как они поведут себя в морской воде и в неблагоприятных погодных условиях", - отметил представитель ECN Ян Кроон.

Представители консорциума подчеркивают, что плавучую солнечную электростанцию можно установить прямо между морскими ветровыми турбинами. Там более спокойные волны и уже проведены все линии электропередачи. В ближайшие три года консорциум будет работать над прототипом при финансовой поддержке государственного Агентства предпринимательства Нидерландов. А Утрехтский университет предоставит стартапу материалы своих исследований.

Стоимость солнечной энергии в Австралии упала на 44% с 2012 года

Такое увлечение возобновляемой энергии привело к тому, что люди действительно начали платить меньше за электричество. Плюсом к этому также стало то, что стоимость самой электроэнергии снизилась. С 2012 года издержки на установку и эксплуатацию солнечных панелей упали почти на половину.

В 2017 году в стране частные домовладельцы и бизнес установили панелей суммарной мощностью 1,05 ГВт. Такую оценку дает ведомство, отвечающее за вопросы чистой энергетики в стране. Власти говорят, что это рекордный показатель за всю историю. Сообщается, что в начале этого десятилетия рост возобновляемой энергетики был связан с выгодными субсидиями и налоговыми предложениями, но рост 2017 отличается: жители страны решили таким образом бороться с повышающимися тарифами на электроэнергию, и движение стало массовым.

По прогнозам BNEF, Австралия станет мировым лидером по внедрению солнечных панелей. К 2040 году 25% потребности страны в электроэнергии будет покрываться солнечными панелями на крышах. Это станет возможным из-за того, что сегодня срок окупаемости таких решений сократился до минимального с 2012 года. Пока это не значит, что традиционные электростанции Австралии уходят в прошлое, но люди становятся свободнее в вопросах обеспечения себя электроэнергией.

2017

Южная Корея в 5 раз увеличит солнечную генерацию к 2030 году

Министр торговли, промышленности и энергетики Южной Кореи обнародовал план правительства по пятикратному увеличению выработки солнечной энергии к 2030 году .

Это заявление было сделано вскоре после того, как избранный в этом году президент Мун Чжэ Ин пообещал прекратить государственную поддержку строительства новых атомных электростанций и взять курс на экологически чистые источники электроэнергии. Правительство уже отменило строительство шести ядерных реакторов в Южной Корее .

Всего страна планирует получать к 2030 пятую часть вырабатываемого электричества из возобновляемых источников. В прошлом году этот показатель составлял 7%. Для этого к назначенному сроку планируется добавить 30,8 ГВт солнечных мощностей и 16,5 ГВ ветровых. Дополнительная энергия будет поступать из крупнейших проектов, а также от частных домохозяйств и малого бизнеса, заявил министр Пайк Унгю. "Мы фундаментально изменим путь развития возобновляемой энергетики, создав условия, при которых граждане легко смогут принять участие в торговле возобновляемой энергией", - сказал он.

Это значит, что к 2022 году примерно 1 из 30 домохозяйств должно быть оборудовано солнечными панелями, сообщает Clean Technica.

Тем не менее, пока Южная Корея занимает пятое место в мире по использованию атомной энергии. В стране 24 действующих реактора, обеспечивающих приблизительно треть потребностей страны в электричестве.

BP инвестировала $200 млн в солнечную энергетику

Пустыня Атакама в Чили- одно из самых солнечных и сухих мест на планете. Логично, что именно там решили построить крупнейшую в Латинской Америке солнечную электростанцию El Romero. Гигантские солнечные панели покрывают 280 га площади. Ее пиковая мощность - 246 МВт, а в год электростанция генерирует 493 ГВт-ч энергии - достаточно, чтобы обеспечить электричеством 240 000 домов.

Удивительно, но всего пять лет назад в Чили почти не использовали возобновляемые источники энергии. Страна была зависима от соседей-поставщиков энергоносителей, которые завышали цены и заставляли чилийцев страдать от непомерных счетов за электричество. Однако, именно отсутствие ископаемого топливо привело к серьезному потоку инвестиций в возобновляемые источники, особенно в солнечную энергетику.

Сейчас Чили производит практически самую дешевую солнечную энергию в мире. Компании надеются, что страна станет "Саудовской Аравией для Латинской Америки". Чили уже присоединился к Мексике и Бразилии в первой десятке стран-производителей возобновляемой энергетики, и теперь собирается стать лидером при переходе на "чистую" энергию в Латинской Америке.

"Правительство Мишель Бачелет совершило тихую революцию, - уверен социолог Еугенио Тирони. - Ее заслугу в переходе на возобновляемые источники энергии трудно переоценить, и это определит фактор развития страны на долгие годы".

Теперь, когда олигополистический рынок энергетики в Чили открыт для конкурентной борьбы, правительство поставило новую цель: к 2025 году 20% всей энергии страны должно поступать из возобновляемых источников. А к 2040 году Чили собирается полностью перейти на "чистую" энергетику. Даже экспертам это не кажется утопией, поскольку солнечные электростанции страны при ныне существующих технологиях производят в два раза более дешевое электричество, чем угольные электростанции. Цены на солнечную энергию упали на 75%, достигнув рекордных 2,148 центов за киловатт-час.

Компании-производители сталкиваются с другой проблемой: слишком дешевое электричество не приносит особой прибыли, а содержание и замена солнечных панелей стоит недешево. "Правительству придется строить долгосрочные стратегии, чтобы чудо не стало кошмаром", - заявил генеральный директор испанского конгломерата Acciona Хосе Игнасио Эскобар.

Google полностью переходит на солнечную и ветровую энергию

Компания стала крупнейшим в мире корпоративным покупателем возобновляемой энергии, достигнув суммарной мощности 3 ГВт. Общие инвестиции Google в сферу чистой энергетики достигли $3,5 млрд, пишет в ноябре 2017 года Electrek .

Google официально переходит на стопроцентное использование солнечной и ветряной энергии. Компания подписала контракт с тремя ветровыми электростанциями: Avangrid в Южной Дакоте, EDF в Айове и GRDA в Оклахоме, суммарная мощность которых составляет 535 МВт. Теперь офисы Google по всему миру будут потреблять 3 ГВт возобновляемой энергии.

Общие инвестиции компании в сферу энергетики достигли $3,5 млрд, и 2/3 из них приходится на объекты в . Такой интерес к "чистым" источникам связан, в первую очередь, с падением стоимости солнечной и ветряной энергии на 60-80% за последние годы.

Впервые Google подписал договор о сотрудничестве с солнечной фермой в Айове мощностью 114 МВт еще в 2010 году. К ноябрю 2016 года компания уже была участником 20 проектов по возобновляемой энергетике. Полностью перейти на энергию солнца и ветра она собиралась еще в декабре 2016 года. Сейчас Google самый крупный в мире корпоративный покупатель возобновляемой энергии.

В Швеции изобрели умные стекла для окон

Ученые давно исследуют данную область и ищут применение разработке. В современном мире такая технология актуальна, так как теплопотери домов из-за окон составляют примерно 20%. Ученые считают, что их изобретение сможет также применяться для теплоизоляции различных объектов.

В Иране деревни продают электроэнергию государству

На осень 2017 года «зеленых» деревень в ИРИ более 200. Ожидается, что к весне 2018 года их число достигнет 300. "Иран сегодня сообщает", что в некоторых населенных пунктах страны солнечные батареи стоят уже десять лет. Отмечается, что самые большие объемы энергии из солнца производят в провинциях Керман, Хузестан и Лурестан .

Изначально появление альтернативных источников энергии в деревнях Ирана обуславливалось невозможностью доставки в них электричества из городов. Теперь собственную энергию они продают Министерству энергетики ИРИ. Планируется выработать законодательные нормы, согласно которым закупки электроэнергии в деревнях станут постоянными.

К 2030 году Иран рассчитывает производить 7500 МВт «зеленой» энергии, сегодня этот показатель всего 350 МВт. Однако у страны есть хорошие перспективы для развития солнечной энергетики, потому что на 2/3 территории солнце светит 300 дней в году.

Британские ученые изобрели стеклянные кирпичи с солнечными батареям

Группа ученых Эксетерского университета в Англии разработала стеновые блоки из стекла со встроенными солнечными батареями. Об этом пишет архитектурный портал Archdaily. Блоки можно использовать при строительстве домов вместо обычных кирпичей.

Стройматериал назвали «Solar Squared» («Солнечная квадратная плитка»). Как показали тесты в лаборатории университета, помимо генерации электроэнергии блоки обладают и рядом других полезных свойств. В частности, построенные таким образом стены хорошо пропускают в здание солнечный свет и сохраняют тепло в помещениях.

Для продвижения продукта ученые создали инновационную компанию The Build Solar. В настоящее время ведется поиск инвесторов. Вывод «солнечной плитки» на рынок предварительно запланирован на 2018 год.

В Дубае запустили крупнейшую в мире солнечной электростанции

Установка каждой гелиопанели обошлась в 6 тыс. евро, включая аренду на год, ремонт и техническое оборудование. Планируется, что солнечные батареи будут работать на остановках общественного транспорта около года, после чего будут переданы школам и детсадам.

По словам Петра Свитальского, главы делегации ЕС в Армении, Евросоюз заинтересован в развитии альтернативной энергетики в стране. Остановку с гелиопанелями он назвал «солнечной остановкой Евросоюза ».