Экологические характеристики альтернативных источников энергии. География мировой энергетики — Общая характеристика

05.07.2019

«Атомная электростанция» - Тепловыделяющий элемент(ТВЭЛ). Самый известный реактор использующий управляемый ядерный синтез – солнце. АЭС различаются по типу реакторов и по виду отпускаемой энергии. Атомные электростанции. Атомные Электростанции. Термоядерные реакторы. Предметы исследования. Назад. На рисунке показана схема работы атомной электростанции.

«Ядерная энергия» - Энергетический реактор. Советская Атомная Бомба: 1939-1955. ТриМайл Айленд АЭС на ТриМайл Айленд, 1979. В-частицы. Троица-первое в мире испытание технологии ядерного оружия. Нейтроны. Обогащение. Ядерная Энергия - История. Шахта. Припять, Украина фото Джейсона Миншулла. Reference: IAEA. Время. Улучшение оружия.

«Альтернативная энергия» - В том числе и в России. Энергия воды. Автономные источники электропитания, в основном, устанавливаются на малых реках. Вторым типом «водных» электростанций являются речные. Альтернативное топливо для транспорта. Основным видом “бесплатной” неиссякаемой энергии по справедливости считается Солнце. Более 99 % топлива, используемого на транспорте, производится из нефти.

«Энергосбережение в школе» - Пути энергосбережения в школе и дома Автор: Андрианова Екатерина Алексеевна Руководитель: Шиндина Татьяна Николаевна. Цель: Провести мониторинговые исследования путей энергосбережения в школе, дома и газовой котельной. Концентрация СО2, ррм.

«Устойчивое развитие» - Rio-de Janeiro, 1992. Устойчивое развитие и энергетика Казахстана. Рио-де-Жанейро, 1992. Потенциал энергоэффективности и ВИЭ в Казахстане. Проект ПРООН и МЭМР в развитии ветроэнергетики в Казахстане. Концепция энергетики для устойчивого развития. Устойчивое развитие – основная повестка 21 века. Дорошин Г.А. Руководитель проекта ПРООН по ветроэнергетике Астана, 2006.

«Энергетика России» - Энергия и Энергетика. Э2. Земледелие скотоводство. Пассионарность. Топливно-энергетический баланс. Ергия (2). Кинетическая энергия (движение). Мониторинг ЭС-2020 (Добыча и прирост запасов нефти). Промышленность инфраструктура. Син. Электропотребление и электроемкость ВВП. ТЭК и макроэкономика. Цена на нефть и влияющие факторы.

Всего в теме 15 презентаций

1. Организационный момент.

- Мы с вами изучаем раздел «География мировых природных ресурсов».

Прежде чем мы начнем знакомиться с новой темой урока, выберем 2 человека, которые будут работать с ресурсами Интернета и искать ответ на поставленные перед ними вопросы.

Вопросы. 1) Привести примеры альтернативных источников энергии, о которых не шла речь на уроке. Указать, в чем их суть.(Исключить минеральные, водные, земельные, лесные ресурсы и ресурсы Мирового океана).

2) На какие группы можно делить рекреационные ресурсы? (не рассматривать классификацию, которая дана в учебнике на стр.121)

2. Т. З. М.

С какими видами природные ресурсов мы уже познакомились?

Тема нашего сегодняшнего урока называется «Интересные виды природных ресурсов», а в учебнике тема звучит как «Другие виды природных ресурсов». (слайд 1) Почему другие виды, что это за другие виды природных ресурсов? Как вы понимаете?

Это альтернативные источники энергии и рекреационные ресурсы.

Что мы хотим узнать на уроке? (слайд 2)

Сегодня мы не просто вспомним, что это за виды природных ресурсов, а выявим их разнообразие на нашей планете, дадим им оценку и составим карту их географии.

На уроке мы будем составлять проект - карту «Типы альтернативных электростанций и рекреационные ресурсы мира» и вы будете являться активными участниками нашего проекта.

Для создания проекта на прошлом уроке мы разделились на микрогруппы по 3 человека. В каждой группе выбрали лидера, организатора и оформителя. Каждая группа будет работать над своим проектом, который необходимо представить в конце урока. Защиту проекта продумывается с помощью вопросов, которые даны вам на листах.

3. Новый материал.

Первое с чем мы сегодня познакомимся – это альтернативные источники энергии. (слайд 3)

Существуют традиционные и нетрадиционные источниками энергии.

– Что относят к традиционным источникам энергии?

– Почему топливные ресурсы, энергия воды и атомная энергия считаются традиционными источниками энергии?

Как иначе мы называем нетрадиционные источники энергии?

– Перечислите альтернативные источники энергии.

Почему их называют альтернативными?

Все традиционные электростанции (ТЭС, ГЭС, АЭС) вырабатывают более 99% от всей мировой энергии, соответственно, альтернативные электростанции – менее 1%.

Уже очень давно говорится о перспективах термоядерной энергетики. Что значит термоядерная? (слайд 4)

Она способна сделать человека независимым от традиционных энергоносителей. Несмотря на все усилия ученых, пока не удается создать даже опытную термоядерную установку. Но работы в этом направлении ведутся с неослабевающей интенсивностью уже много десятилетий.

Работа с текстом учебника.

Познакомимся с альтернативными источниками энергии, определим факторы, влияющие на размещение электростанций и проблемы их размещения. Для этого заполним таблицу. (текст уч. стр 117-119)

Нетрадиционные источники

Факторы, влияющие на размещение

Проблемы

Страны

Энергия Солнца -

гелеоэнергетика

Исландия, запад США, Новая Зеландия, Филиппины, Италия, Мексика, Япония.

Районы, где дует постоянный и ровный ветер.

высокая стоимость строительства и изменяющаяся в течение суток мощность

Работа с контурной картой.

Будем проверять таблицу и одновременно при помощи условных знаков наносить на контурную карту страны, имеющие электростанции, работающие на альтернативном топливе. (слайд 5 - 12)

Какие еще существуют альтернативные источники энергии, о которых не шла речь на уроке. (слайд 13-15)

Вывод.

Итак, отрасль альтернативной энергетики находится на этапе становления и является очень перспективной, поскольку снижает зависимость человека от исчерпаемых источников минерального топлива.

Познакомиться с рекреационными ресурсами мира.

Как вы понимаете, что значит рекреационные ресурсы? (слайд 16)

Рекреация - восстановление израсходованных в процессе жизнедеятельности физических и духовных сил человека, повышение его здоровья и работоспособности

Рекреационные ресурсы - это природные и антропогенные объекты, которые обладают такими свойствами, как уникальность, историческая или художественная ценность, эстетическая привлекательность, оздоровительная значимость.

В последние десятилетия значения этих ресурсов возросло. Это связано с тем, что человек перестал трудиться ради выживания (или заботиться о добыче хлеба насущного – на сегодня и завтра), а начал думать об отдыхе и связанных с ним удовольствиях, где определенное место и заняли путешествия. Позже этот вид отдыха стал именоваться туризмом.

Туристы есть везде! Есть туристические фирмы, осуществляющие посещение Северного и Южного полюсов, восхождение на Эверест, кругосветное плавание и многое другое. (слайд 17)

Т. О., возник «туристический бум». Что это такое и с чем связан «туристический бум» последних десятилетий? Текст учебника стр 120.

Видов рекреационных ресурсов много. Их можно объединить в две группы. (слайд 18)

Рассмотрите рис.63 на стр.121, заполните схему в тетради, дополните ее примерами из текста учебника или собственными примерами.

(проверка заполненной схемы) (слайд 19-22)

Поскольку одним из видов рекреационных ресурсов являются культурно-исторические ресурсы, здесь особое внимание нужно уделить объектам всемирного культурного и природного наследия.

(сообщение 1-го ученика) (слайд 23-26)

На какие еще группы можно делить рекреационные ресурсы? (слайд27)

Рассмотрим анаморфозу международных туристических поездок.

(слайд 28)

Карта показана в искаженном виде, так как те страны, которые принимают много туристов в течение года, наливаются соками и распухают, а страны, в которые совершается небольшое количество туристических поездок – уменьшаются в размерах по сравнению с реальными очертаниями.

По карте видно, что Западная Европа - наиболее популярное направление для международных туристов. Область получает 46 % мировых туристических поездок. 0.1 % мировых туристических поездок совершается на центральноафриканские территории

Как туристическое предназначение Андорра получает 45 посещений на человека в населении, ежегодно. Эквивалентные числа для Монако и Багам 7 и 5, соответственно.

Проследим динамику международного туризма с 1950 года по 2005 год. Какой вывод можно сделать по данной диаграмме? (слайд 29)

Стран, которые имеют рекреационные ресурсы, огромное количество. К ним можно отнести Францию, Италию, Германию, Индию, Турцию, Мексику, Египет, Россию… Но наибольшей популярностью пользуются страны и районы, где богатые природно-рекреационные ресурсы сочетаются с культурно-историческими достопримечательностями.

Работа с контурной картой.

Закончить карту «Типы альтернативных электростанций рекреационные ресурсы мира» - привести по 2-3 примера стран к каждой группе рекреационных ресурсов. (слайд 30)

Вывод.

Современный образ жизни привел к рекреационному взрыву. Туристы посещают различные страны мира. Рекреационные ресурсы образуют не только природные, но и антропогенные объекты.

Защита проектов.

    Продумайте название вашей карты. Почему вы выбрали именно такое название?

    Продумайте условные обозначения для каждого типа альтернативных электростанций. Почему вы выбрали именно такие условные обозначения?

    Интересно ли вам было работать над этой проблемой?

    Интересно ли вам было работать с этими людьми в группе?

5) Хотелось бы изменить процесс работы над проектом? Почему?

4. Домашнее задание.

Написать эссе на одну из тем: «Нетрадиционные источники энергии: за и против»» или «Рекреационные ресурсы мира».

Р/т стр. 52 – 54 все задания.

(Эссе – жанр философской, научно-критической, историко-биографической, публицистической прозы, сочетающей подчеркнуто индивидуальную позицию автора с непринужденным, часто парадоксальным изложением, ориентированным на разговорную речь.)

Мировая электроэнергетика

Руководитель: Гаврикова Ольга Николаевна

Нижний Новгород


Рецензия


TOC o «1-2» h z u Введение. PAGEREF _Toc43360883 h 3

Общие положения. PAGEREF _Toc43360884 h 4

Типы и видыэлектростанций. PAGEREF _Toc43360885 h 6

Факторы, влияющие на размещение электрическихстанций. PAGEREF _Toc43360886 h 10

Проблемы развитияядерной энергетики. PAGEREF _Toc43360887 h 11

Альтернативныеисточники энергии. PAGEREF _Toc43360888 h 13

Солнечная энергия. PAGEREF _Toc43360889 h 14

Энергия ветра. PAGEREF _Toc43360890 h 15

Морская энергия. PAGEREF _Toc43360891 h 16

Энергия рек. PAGEREF _Toc43360892 h 16

Энергия мировогоокеана. PAGEREF _Toc43360893 h 17

Энергия земли. PAGEREF _Toc43360894 h 20

Энергия из отходов. PAGEREF _Toc43360895 h 20

Энергия навоза. PAGEREF _Toc43360896 h 20

Водородная энергетика. PAGEREF _Toc43360897 h 21

Заключение. PAGEREF _Toc43360898 h 24

Список литературы… PAGEREF _Toc43360899 h 25

Введение

Современное общество кконцу ХХ века столкнулось с энергетическими проблемами, которые приводилиизвестной степени даже к кризисам. Человечество старается найти новые источникиэнергии, которые были бы выгодны во всех отношениях: простота добычи, дешевизнатранспортировки, экологическая чистота, восполняемость. Уголь и газ отходят навторой план: их применяют только там, где невозможно использовать что-либодругое. Всё большее место в нашей жизни занимает атомная энергия: её можноиспользовать как в ядерных реакторах космических челноков, так и в легковомавтомобиле.

Все традиционныеисточники энергии обязательно закончатся, особенно при постоянно возрастающихпотребностях людей. Поэтому на рубеже XXI века человек стал задумываться о том,что станет основой его существования в новой эре. Есть и другие причины, всвязи с которыми человечество обратилось к альтернативным источникам энергии. Во-первых,непрерывный рост промышленности, как основного потребителя всех видов энергии(при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на – 35 –40 лет, газа – на 50 лет). Во-вторых, необходимость значительныхфинансовых затрат на разведку новых месторождений, так как часто эти работысвязаны с организацией глубокого бурения (в частности, в морских условиях) идругими сложными и наукоемкими технологиями. И, в третьих, экологическиепроблемы, связанные с добычей энергетических ресурсов. Не менее важной причинойнеобходимости освоения альтернативных источников энергии является проблемаглобального потепления. Суть ее заключается в том, что двуокись углерода (СО2),высвобождаемая при сжигании угля, нефти и бензина в процессе получения тепла,электроэнергии и обеспечения работы транспортных средств, поглощает тепловоеизлучение поверхности нашей планеты, нагретой Солнцем и создает так называемыйпарниковый эффект.


Общие положения

Электроэнергетика - отрасль промышленности, занимающаяся производством электроэнергии наэлектростанциях и передачей ее потребителям, является также одной из базовыхотраслей тяжёлой промышленности.

Энергетика является основой развития производственныхсил в любом государстве. Энергетика обеспечивает бесперебойную работупромышленности, сельского хозяйства, транспорта, коммунальных хозяйств.Стабильное развитие экономики невозможно без постоянно развивающейсяэнергетики.

Научно-технический прогресс невозможен без развитияэнергетики, электрификации. Для повышения производительности трудапервостепенное значение имеет механизация и автоматизация производственныхпроцессов, замена человеческого труда (особенно тяжелого или монотонного)машинным. Но подавляющее большинство технических средств механизации иавтоматизации (оборудование, приборы, ЭВМ) имеет электрическую основу. Особенноширокое применение электрическая энергия получила для привода в действиеэлектрических моторов. Мощность электрических машин (в зависимости от их назначения)различна: от долей ватта (микродвигатели, применяемые во многих отрасляхтехники и в бытовых изделиях) до огромных величин, превышающих миллион киловатт(генераторы электростанций).

Человечеству электроэнергия нужна, причем потребностив ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природныхтоплив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерноготоплива - урана и тория, из которого можно получать в реакторах-размножителяхплутоний. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии,причем выгодные не только с точки зрения дешевизны топлива, но и с точки зренияпростоты конструкций, эксплуатации, дешевизны материалов, необходимых дляпостройки станции, долговечности станций.

Энергетическая промышленность является частьютопливно-энергетической промышленности и неразрывно связана с другойсоставляющей этого гигантского хозяйственного комплекса - топливнойпромышленностью.

Электроэнергетика наряду с другими отраслями народногохозяйства рассматривается как часть единой народно-хозяйственной экономическойсистемы. В настоящее время без электрической энергии наша жизнь немыслима.Электроэнергетика вторглась во все сферы деятельности человека: промышленностьи сельское хозяйство, науку и космос. Представить без электроэнергии наш быттакже невозможно. Столь широкое распространение объясняется ее специфическимисвойствами:

o

возможностипревращаться практически во все другие виды энергии (тепловую, механическую,звуковую, световую и другие);

o

способностиотносительно просто передаваться на значительные расстояния в большихколичествах;

o

огромнымскоростям протекания электромагнитных процессов;

o

способности кдроблению энергии и образование ее параметров (изменение напряжения, частоты).

Основным потребителем электроэнергии остаетсяпромышленность, хотя ее удельный вес в общем полезном потребленииэлектроэнергии во всём мире значительно снижается. Электрическая энергия впромышленности применяется для приведения в действие различных механизмов и непосредственнов технологических процессах. В настоящее время коэффициент электрификации силовогопривода в промышленности составляет 80%. При этом около 1/3электроэнергиирасходуется непосредственно на технологические нужды.

В сельском хозяйстве электроэнергия применяется дляобогрева теплиц и помещений для скота, освещения, автоматизации ручного трудана фермах.

Огромную роль электроэнергия играет в транспортномкомплексе. Большое количество электроэнергии потребляет электрифицированныйжелезнодорожный транспорт, что позволяет повышать пропускную способность дорогза счет увеличения скорости движения поездов, снижать себестоимость перевозок,повышать экономию топлива. Электрифицированный номинал железных дорог в России,составлял по протяженности 38% всех железных дорог страны и около 3% железныхдорог мира, обеспечивает 63% грузооборота железных дорог России и 1/4 мировогогрузооборота железнодорожного транспорта. В Америке и, особенно в странахЕвропы, эти показатели несколько выше.

Электроэнергия в быту является основной частьюобеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники,телевизоры, стиральные машины, утюги и другие) были созданы благодаря развитиюэлектротехнической промышленности.

Сегодня по потреблению электроэнергии на душунаселения Россия уступает 17 странам мира, среди которых США, Франция, Германия,от многих из этих стран отстает и по уровню электровооруженности труда впромышленности и сельском хозяйстве. Потребление электроэнергии в быту и сфереуслуг в России 2-5 раз ниже, чем в других развитых странах. При этомэффективность и результативность использования электроэнергии в России заметно меньше,чем в ряде других стран.

Электроэнергетика - важнейшая часть жизнедеятельностичеловека. Уровень ее развития отражает уровень развития производительных силобщества и возможности научно-технического прогресса.


Типы и видыэлектростанций

Теплоэнергетика

Первые ТЭС появились в конце XIXвека (в 1882 - в Нью-Йорке, 1883 - в Петербурге, 1884- в Берлине) и получили преимущественное распространение. В середине 70-х годовХХ века ТЭС - основной вид электрических станций. Доля вырабатываемой имиэлектроэнергии составляла: в России и США 80% (1975), в мире около 76% (1973).

Сейчас около 50% всей электроэнергии мира производитсяна тепловых электростанциях. Большинство городов России снабжаются именно ТЭС.Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не толькоэлектроэнергию, но и тепло в виде горячей воды. Такая система является довольно-такинепрактичной т.к. в отличие от электрокабеля надежность теплотрасс чрезвычайнонизка на больших расстояниях, эффективность централизованного теплоснабжениясильно при передаче также понижается (КПД достигает 60 – 70%). Подсчитано, чтопри протяженности теплотрасс более 20 км (типичная ситуация для большинствагородов) установка электрического бойлера в отдельно стоящем доме становитсяэкономически выгодна. На размещение тепловых электростанций оказывает основноевлияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены вместах добычи топлива. Тепловые электростанции, использующие местные виды органическиетоплив (торф, сланцы, низкокалорийные и многозольные угли, мазут, газ),ориентируются на потребителя и одновременно находятся у источников топливныхресурсов.

Принцип работы тепловых станций основан напоследовательном преобразовании химической энергии топлива в тепловую иэлектрическую энергию. Основным оборудованием ТЭС является котел, турбина,генератор. В котле при сжигании топлива выделяется тепловая энергия, котораяпреобразуется в энергию водяного пара. В турбине водяной пар превращается вмеханическую энергию вращения. Генератор превращает энергию вращения вэлектрическую. Тепловая энергия для нужд потребления может быть взята в видепара из турбины либо котла.

Тепловые электростанции имеют как свои преимущества,так и недостатки. Положительным по сравнению с другими типами электростанцийявляется относительно свободное размещение, связанное с широкимраспространением и разнообразием топливных ресурсов; способность вырабатыватьэлектроэнергию без сезонных колебаний. К отрицательным относятся следующиефакторы: ТЭС обладает низким коэффициентом полезного действия, еслипоследовательно оценить различные этапы преобразования энергии, то увидим, чтоне более 32% энергии топлива превращается в электрическую. Топливные ресурсынашей планеты ограничены, поэтому нужны электростанции, которые не будутиспользовать органическое топливо. Кроме того, ТЭС оказывает крайне неблагоприятноевоздействие на окружающую среду. Тепловые электростанции всего мира, в томчисле и России выбрасывает в атмосферу ежегодно 200-250 млн. тонн золы и около60 млн. тонн сернистого ангидрида, они поглощают огромное количество кислорода.

Гидроэнергетика

По количеству вырабатываемой энергии на втором местенаходятся гидравлические электростанции (ГЭС). Они производят наиболее дешевуюэлектроэнергию, но имеют довольно большую себестоимость постройки. Именно ГЭС позволилисоветскому правительству в первые десятилетия советской власти совершить большойпрорыв в промышленности.

Современные ГЭС позволяют производить до 7 млн. кВтэнергии, что вдвое превышает показатели действующих в настоящее время ТЭС и, пока,АЭС, однако размещение ГЭС в Европе затруднено по причине дороговизны земли и невозможностизатопления больших территорий в данных регионах. Важным недостатком ГЭСявляется сезонность их работы, столь неудобная для промышленности.

ГЭС можно разделить на две основные группы: ГЭС накрупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭСсооружалась на равнинных реках. Равнинные водохранилища обычно велики поплощади и изменяют природные условия на значительных территориях. Ухудшаетсясанитарное состояние водоемов: нечистоты, которые раньше выносились реками,накапливаются в водохранилищах, приходится применять специальные меры дляпромывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно,чем на горных, но иногда это необходимо, например, для создания нормальногосудоходства и орошения. Во всех странах мира стараются отказаться от использованияГЭС на равнинных реках, переходя на быстрые горные реки или АЭС.

Гидравлические электростанции используют для выработкиэлектроэнергии гидроэнергетические ресурсы, то есть силу падающей воды.Существует три основных вида ГЭС:

1.

Гидроэлектрические станции.

Технологическая схема их работы довольна проста.Естественные водные ресурсы реки преобразуются в гидроэнергетические ресурсы спомощью строительства гидротехнических сооружений. Гидроэнергетические ресурсыиспользуются в турбине и превращаются в механическую энергию, механическаяэнергия используется в генераторе и превращается в электрическую энергию.

2.

Приливные станции.

Природа сама создает условия для получения напора, подкоторым может быть использована вода морей. В результате приливов и отливовуровень морей меняется на северных морях - Охотском, Беринговом, волнадостигает 13 метров. Между уровнем бассейна и моря создается разница и такимобразом создается напор. Так как приливная волна периодически изменяется, то всоответствии с ней меняется напор и мощность станций. Пока еще использованиеприливной энергии ведется в скромных масштабах. Главным недостатком такихстанций является вынужденный режим. Приливные станции (ПЭС) дают свою мощностьне тогда, когда этого требует потребитель, а в зависимости от приливов иотливов воды. Велика также стоимость сооружений таких станций.

3.

Гидроаккумулирующие электростанции.

Их действие основано на цикличном перемещении одного итого же объема воды между двумя бассейнами: верхним и нижним. В ночные часы,когда потребность электроэнергии мала, вода перекачивается из нижнеговодохранилища в верхний бассейн, потребляя при этом излишки энергии,производимой электростанциями ночью. Днем, когда резко возрастает потреблениеэлектричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатываяпри этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны.Таким образом ГАЭС позволяет решать проблемы пиковых нагрузок. В России,особенно в европейской части, остро стоит проблема создания маневренных электростанций,в том числе ГАЭС.

Кроме перечисленных достоинств и недостатковгидравлические электростанции имеют следующие: ГЭС являются весьма эффективнымиисточниками энергии, поскольку используют возобновимые ресурсы, они просты вуправлении и имеют высокий КПД - более 80%. В результате производимая энергияна ГЭС самая дешевая. Огромное достоинство ГЭС – возможность практическимгновенного автоматического запуска и отключение любого требуемого количестваагрегатов. Но строительство ГЭС требует длительных сроков и больших удельныхкапиталовложений, это связано с потерей земель на равнинах, наносит ущербрыбному хозяйству. Доля участия ГЭС в выработке электроэнергии значительноменьше их доли в установленной мощности, что объясняется тем, что их полнаямощность реализуется лишь в короткий период времени, причем только в многоводныегоды. Поэтому, несмотря на обеспеченность многих стран мира гидроэнергетическимиресурсами, они не могут служить основной выработки электроэнергии.

Атомная энергетика.

Первая в мире АЭС - Обнинская была пущена в 1954 годув России. Персонал 9 российских АЭС составляет 40,6 тыс. человек или 4% отобщего числа населения занятого в энергетике. 11,8% или 119,6 млрд. кВт всейэлектроэнергии, произведенной в России выработано на АЭС. Только на АЭС ростпроизводства электроэнергии сохраняется высоким.

Планировалось, что удельный вес АЭС в производствеэлектроэнергии достигнет в СССР в 1990 г. 20%, фактически было достигнутотолько 12,3%. Чернобыльская катастрофа вызвала сокращение программы атомногостроительства, с 1986 г. в эксплуатацию были введены только 4 энергоблока. АЭС,являющиеся наиболее современным видом электростанций, имеют ряд существенныхпреимуществ перед другими видами электростанций: при нормальных условиях функционированияони обсолютно не загрязняют окружающую среду, не требуют привязки к источникусырья и соответственно могут быть размещены практически везде, новыеэнергоблоки имеют мощность практичеки равную мощности средней ГЭС, однакокоэффициэнт использования установленной мощности на АЭС (80%) значительнопревышает этот показатель у ГЭС или ТЭС.

Значительных недостатков АЭС при нормальных условияхфункционирования практически не имеют. Однако нельзя не заметить опасность АЭСпри возможных форс-мажорных обстоятельствах: землетрясениях, ураганах, и т. п.- здесь старые модели энергоблоков представляют потенциальную опасностьрадиационного заражения территорий из-за неконтролируемого перегрева реактора. Однакоповседневная работа АЭС сопровождается рядом негативных последствий:

1.

Существующиетрудности в использовании атомной энергии – захоронение радиоактивныхотходов. Для вывоза со станций сооружаются контейнеры с мощной защитой исистемой охлаждения. Захоронение производится в земле, на больших глубинах в теологическистабильных пластах.

2.

Катастрофическиепоследствия аварий на некоторых устаревших АЭС – следствие несовершенной защитысистемы.

3.

Тепловоезагрязнение используемых АЭС водоёмов.

Функционирование АЭС, как объектов повышеннойопасности, требует участия государственных органов власти и управления вформировании направлений развития, выделения необходимых средств.


Факторы, влияющие на размещение электрических станций

На размещение различных видов электростанций влияютразличные факторы. На размещение тепловых электростанций оказывает основноевлияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены,как правило, в местах добычи топлива, чем крупнее электростанция, тем дальшеона может передавать электроэнергию. Потребительскую ориентацию имеют электростанции,использующие высококалорийное топливо, которое экономически выгодно транспортировать.Электростанции, работающие на мазуте, располагаются преимущественно в центрахнефтеперерабатывающей промышленности.

Так как гидравлические электростанции используют длявыработки электроэнергии силу падающей воды, то, соответственно, ориентированына гидроэнергетические ресурсы. Огромные гидроэнергетические ресурсы мирарасположены неравномерно. Для гидростроительства в нашей стране было характерносооружение на реках каскадов гидроэлектростанциях. Каскад-группа ТЭС, расположенныхступенями по течению водного потока для последовательного использования егоэнергии. При этом помимо получения электроэнергии, решаются проблемы снабжениянаселения и производства водой, устранение паводков, улучшения транспортныхусловий. К сожалению, создание каскадов в стране привело к крайне негативнымпоследствиям: потере ценных сельскохозяйственных земель, нарушениюэкологического равновесия.

Равнинные водохранилища обычно велики по площадиизменяют природные условия на значительных территориях. Ухудшается санитарноесостояние водоемов: нечистоты, которые раньше выносились реками, накапливаютсяв водохранилищах, приходится применять специальные меры для промывки русел реки водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем нагорных, но иногда это необходимо, например, для создания нормального судоходстваи орошения.

Атомные электростанции можно строить в любом районе,независимо от его энергетических ресурсов: атомное топливо отличается большимсодержанием энергии (в 1 кг основного ядерного топлива – урана - содержитсяэнергии столько же, сколько в 2500 т. угля). В условиях безаварийной работы АЭСне дают выбросов в атмосферу, поэтому безвредны для потребителя. В последнее времясоздаются АТЭЦ и АСТ. На АТЭЦ, как и на обычной ТЭЦ, производится иэлектрическая и тепловая энергия, а на АСТ только тепловая.


Проблемы развитияядерной энергетики

После катастрофы на Чернобыльской АЭС под влияниемобщественности в России были существенно приторможены темпы развития атомнойэнергетики. Существовавшая ранее программа ускоренного достижения суммарноймощности АЭС в 100 млн. кВт (США уже достигли этого показателя) была фактическизаконсервирована. Огромные прямые убытки повлекло закрытие всех строившихся вРоссии АЭС, станции, признанные зарубежными экспертами как вполне надежные,были заморожены даже в стадии монтажа оборудования. Однако, последнее времяположение начинает меняться: в июне 93го года пущен 4ыйэнергоблок Балаковской АЭС, в ближайшие несколько лет планируется пуск ещенескольких атомных станций и дополнительных энергоблоков принципиально новойконструкции. Известно, что себестоимость атомной энергии значительно превышаетсебестоимость электроэнергии, полученной на тепловых или гидравлическихстанциях, однако использование энергии АЭС во многих конкретных случаях нетолько незаменимо, но и является экономически выгодным - в США АЭС за период с58 года по настоящий момент принесли 60 млрд. долларов чистой прибыли. Большоепреимущество для развития атомной энергетики в России создаютроссийско-американские соглашения о СНВ-1 и СНВ-2, по которым будутвысвобождаться огромные количества оружейного плутония, невоенное использованиекоторого возможно лишь на АЭС. Именно благодаря разоружению традиционносчитавшаяся дорогой электроэнергия, получаемая от АЭС, может стать примерно вдва раза дешевле электроэнергии ТЭС.

Российские и зарубежные ученые-ядерщики в один голосговорят, что для радиофобии, возникшей после чернобыльской аварии, серьезныхоснований научно-технического характера не существует. Как сообщилаправительственная комиссия по проверке причин аварии на Чернобыльской АЭС,«авария произошла вследствие грубейших нарушений порядка управления атомнымреактором РБМК-1000 оператором и его помощниками, имевшими крайне низкуюквалификацию». Большую роль в аварии сыграла и состоявшаяся незадолго до неепередача станции из Минсредмаша, накопившего к тому времени огромный опытуправления ядерными объектами в МинЭнерго, где такого опыта совсем не было. Кнастоящему времени система безопасности реактора РБМК существенно улучшена:усовершенствована защита активной зоны от пережога, ускорена система срабатыванияаварийных сенсоров. Журнал ScientificAmericanпризнал эти усовершенствованиярешающими для безопасности реактора. В проектах нового поколения атомных реакторовосновное внимание уделяется надежному охлаждению активной зоны реактора.Последние несколько лет сбои в работе на АЭС в разных странах происходят редкои классифицируются как крайне незначительные.

Развитие атомной энергетики в мире неотвратимо и этосейчас понимает большинство населения планеты, да и сам отказ от ядернойэнергетики потребовал бы колоссальных затрат. Так, если выключить сегодня всеАЭС, потребуется дополнительно около 100 млрд. тонн условного топлива, котороепросто неоткуда взять.

Принципиально новое направление в развитии энергетикии возможной замене АЭС представляют исследования по бестопливнымэлектрохимическим генераторам. Потребляя натрий, содержащийся в морской воде визбытке этот генератор имеет КПД около 75%. Продуктом реакции здесь являетсяхлор и кальцинированная сода, причем возможно последующее использование этихвеществ в промышленности.

Средний коэффициент использованной мощности АЭС постранам мира составил 70%, однако в некоторых регионах он был выше 80%.


Альтернативныеисточники энергии

К сожалению, запасы нефти, газа, угля отнюдь небесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет,израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумыватьсянад тем, как не допустить хищнического разграбления земных богатств. Ведь лишьпри этом условии запасов топлива может хватить на века. К сожалению, многиенефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренныеим природой нефтяные запасы. Сейчас многие из этих стран, особенно в районеПерсидского залива, буквально купаются в золоте, не задумываясь, что черезнесколько десятков лет эти запасы иссякнут. Что же произойдет тогда, – а эторано или поздно случится, – когда месторождения нефти и газа будут исчерпаны?Происшедшее повышение цен на нефть, необходимую не только энергетике, но итранспорту, и химии, заставило задуматься о других видах топлива, пригодных длязамены нефти и газа. Особенно призадумались тогда те страны, где нетсобственных запасов нефти и газа, и которым приходится их покупать.

Поэтому в общую типологию электростанций включаютсяэлектростанции, работающие на так называемых нетрадиционных или альтернативныхисточниках энергии. К ним относят:

o

энергию приливови отливов;

o

энергию малыхрек;

o

энергию ветра;

o

энергию Солнца;

o

геотермальнуюэнергию;

o

энергию горючихотходов и выбросов;

o

энергию вторичныхили сбросовых источников тепла и другие.

Несмотря на то, что нетрадиционные виды электростанцийзанимают всего несколько процентов в производстве электроэнергии, в миреразвитие этого направления имеет большое значение, особенно учитывая разнообразиетерриторий стран. В России единственным представителем этого типа ЭС являетсяПаужетская ГеоТЭС на Камчатке мощностью 11МВт. Станция эксплуатируется с 1964года и уже устарела как морально, так и физически. Уровень технологическихразработок России в этой области сильно отстает от мирового. В удаленных илитруднодоступных районах России, где нет необходимости строить большуюэлектростанцию, да и обслуживать ее зачастую некому, “нетрадиционные” источникиэлектроэнергии - наилучшее решение.

Возрастанию числа электростанций на альтернативныхисточниках энергии будут способствовать следующие принципы:

o

более низкаястоимость электроэнергии и тепла, получаемая от нетрадиционных источников энергии,чем от всех других источников;

o

возможностьпрактически во всех странах иметь локальные электростанции, делающие их независимымиот общей энергосистемы;

o

доступность итехнически реализуемая плотность, мощность для полезного использования;

o

возобновляемостьнетрадиционных источников энергии;

o

экономия илизамена традиционных энергоресурсов и энергоносителей;

o

заменаэксплуатируемых энергоносителей для перехода к экологически более чистым видамэнергии;

o

повышениенадежности существующих энергосистем.

Практически каждая страна располагает каким-либо видомэтой энергии и в ближайшей перспективе может внести существенный вклад втопливно-энергетический баланс мира.

Солнечная энергия

Солнце - неисчерпаемый источник энергии - ежесекунднодает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чемвсе электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергиюсвоим богатством. На сегодня в Тибетском автономном районе Китая построено ужеболее пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещенияплощадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадьюмиллион квадратных метров.

Хотя солнечная энергия и бесплатна, получениеэлектричества из нее не всегда достаточно дешево. Поэтому специалистынепрерывно стремятся усовершенствовать солнечные элементы и сделать ихэффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологийкомпании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию37 % попавшего на него солнечного света.

В Японии ученые работают над совершенствованиемфотогальванических элементов на кремниевой основе. Если толщину солнечногоэлемента существующего стандарта уменьшить в 100 раз, то такие тонкопленочныеэлементы потребуют гораздо меньше сырья, что обеспечит их высокую эффективностьи экономичность. Кроме того, их малый вес и исключительная прозрачность позволятлегко устанавливать их на фасадах зданий и даже на окнах, для обеспечения электроэнергиейжилых домов. Однако поскольку интенсивность солнечного света не всегда и невезде одинакова, то даже при установке множества солнечных батарей, зданиюпотребуется дополнительный источник электричества. Одним из возможных решенийэтого вопроса является использование солнечных элементов в комплексе сдвухсторонним топливным элементом. В дневное время, когда работают солнечныеэлементы, избыточную электроэнергию можно пропускать через водородный топливныйэлемент и таким образом получать водород из воды. Ночью же топливный элементсможет использовать этот водород для производства электроэнергии.

Компактная передвижная электростанция сконструированагерманским инженером Хербертом Бойерманом. При собственном весе 500 кг онаимеет мощность 4 кВт, иначе говоря, способна полностью обеспечить электротокомдостаточной мощности загородное жилье. Это довольно хитроумный агрегат, где энергиювырабатывают сразу два устройства - ветрогенератор нового типа и комплектсолнечных панелей. Первый оснащен тремя полусферами, которые (в отличие отобычного ветрового колеса) вращаются при малейшем движении воздуха, второй - автоматикой, аккуратно ориентирующей солярные элементы на светило. Добытаяэнергия накапливается в аккумулят

Весь мир сегодня в поисках новых источников энергии. Сегодня в мире стали всерьез задумываться над тем, как не допустить разграбления полного истощения природных ресурсов. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны не задумываются о последствиях своей деятельности. Они расходуют нефтяные запасы, не задумываясь о будущем. Происшедшее повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило задуматься о других видах топлива, пригодных для замены нефти и газа. Особенно альтернативные источники энергии начали искать те страны где нет собственных запасов нефти и газа, и которым приходится их покупать.

Поэтому в общую типологию электростанций включаются электростанции, работающие на так называемых нетрадиционных или альтернативных источниках энергии. К ним относят: энергию приливов и отливов; энергию малых рек;·энергию ветра; энергию Солнца; геотермальную энергию; энергию горючих отходов и выбросов; энергию вторичных или сбросовых источников тепла и другие.

Несмотря на то, что нетрадиционные виды электростанций занимают всего несколько процентов в производстве электроэнергии, в мире развитие этого направления имеет большое значение, особенно учитывая разнообразие территорий стран. В России единственным представителем этого типа ЭС является Паужетская ГеоТЭС на Камчатке мощностью 11МВт. Станция эксплуатируется с 1964 года и уже устарела как морально, так и физически. Уровень технологических разработок России в этой области сильно отстает от мирового. В удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживать ее зачастую некому, “нетрадиционные” источники электроэнергии - наилучшее решение.

Возрастанию числа электростанций на альтернативных источниках энергии будут способствовать следующие принципы: более низкая стоимость электроэнергии и тепла, получаемая от нетрадиционных источников энергии, чем от всех других источников; возможность практически во всех странах иметь локальные электростанции, делающие их независимыми от общей энергосистемы; доступность и технически реализуемая плотность, мощность для полезного использования; возобновляемость нетрадиционных источников энергии; экономия или замена традиционных энергоресурсов и энергоносителей; замена эксплуатируемых энергоносителей для перехода к экологически более чистым видам энергии; повышение надежности существующих энергосистем.

Практически каждая страна располагает каким-либо видом этой энергии и в ближайшей перспективе может внести существенный вклад в топливно-энергетический баланс мира.

Солнечная энергия. Солнце - неисчерпаемый источник энергии - ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров. Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 37 % попавшего на него солнечного света. Уже в 1981 году через пролив Ла-Манш совершил перелёт первый в мире самолёт с двигателем, работающим от солнечных батарей. Чтобы совершить перелёт на расстояние 262 км, ему потребовалось 5,5 часа. А по прогнозам учёных конца прошлого века, ожидалось, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его “солнцеобильностью”.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека. Крымская СЭС невелика - мощность всего 5 МВт. В определенном смысле она - проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10-20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные - до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях. Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле - в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и зажигалки и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спутнике Земли (запущенном на орбиту 15 мая 1958 г.).

Энергия ветра. На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс. Природа не создала “месторождения” ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!

Ветровые двигатели не загрязняют окружающую среду, но они очень громоздкие и шумные. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. И, тем не менее, всего одна электростанция, работающая на ископаемом топливе, может заменить по количеству полученной энергии тысячи ветряных турбин. При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Морская энергия. В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 году британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения “морского” электричества по сравнению с другими его источниками, в частности - атомными. В мае 1988 года в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа, который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 кВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена “морской” электроэнергии с 1987 года снизилась вдесятеро.

Волны. Наиболее совершенен проект “Кивающая утка”, предложенный конструктором С. Солтером. Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 кВт/ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это - 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 кВт/ч). Следует заметить, что использование источников альтернативных, возобновляемых видов энергии может достаточно эффективно снизить процент выбросов в атмосферу вредных веществ, то есть в какой-то степени решить одну из важных экологических проблем. Энергия моря может с полным основанием быть причисленной к таким источникам.

Энергия рек. Примерно 1/5 часть энергии, потребляемой во всём мире, вырабатывают на ГЭС. Её получают, преобразуя энергию падающей воды в энергию вращения турбин, которая в свою очередь вращает генератор, вырабатывающий электричество. Гидростанции бывают очень мощными. Так, станция Итапу на реке Парана на границе между Бразилией и Парагваем развивает мощность до13 000 млн. кВт. Энергия малых рек также в ряде случаев может стать источником электроэнергии. Возможно, для использования этого источника необходимы специфические условия (например, речки с сильным течением), но в ряде мест, где обычное электроснабжение невыгодно, установка мини-ГЭС могла бы решить множество локальных проблем. Бесплотинные ГЭС для речек и речушек уже существуют. В комплекте с аккумулятором они могут обеспечить энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую. Опытный образец бесплотинной мини-ГЭС успешно зарекомендовал себя на речках Горного Алтая.

Энергия мирового океана. Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов - все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана. Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км2) занимают моря и океаны - акватория Тихого океана составляет 180 млн. км2. Атлантического - 93 млн. км2, Индийского - 75 млн. км2. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия приливов и отливов. Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление - ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные воды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней. Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.

Мощность электростанций в некоторых местах могла бы составить 2-20 МВт. Первая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию.

Аргентинские специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, но правительство не утвердило дорогостоящий проект.

С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт/ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море.

В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.

Энергия земли. Тепло от горячих горных пород в земной коре тоже может генерировать электричество. Через пробуренные в горной породе скважины вниз накачивается холодная вода, а в вверх поднимается образованный из воды пар, который вращает турбину. Такой вид энергии называется геотермальной энергией. Она используется, например, в Новой Зеландии и Исландии.

Энергия из отходов. Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Во всяком случае именно так поступили в США, в штате Пенсильвания. Когда построенная для сжигания мусора и одновременной выработки электроэнергии для 15000 домов печь стала получать недостаточно топлива, было решено восполнить его мусором с уже закрытых свалок. Вырабатываемая из мусора энергия приносит округу около $ 4000 прибыли еженедельно. Но главное - объем закрытых свалок сократился на 78%.

Энергия навоза. Много проблем связано с загрязнением водоемов отходами звероводческих хозяйств. Большие количества органического вещества, попадающие в водоемы, способствуют их загрязнению. Известно, что теплоцентрали - активные загрязнители окружающей среды, как и свинофермы и коровники. Именно второй способ получения энергии выбрали в английском городе Пиделхинтоне, где разработана технология переработки навоза свиней в электроэнергию. Отходы идут по трубопроводу на электростанцию, где в специальном реакторе подвергаются биологической переработке. Образующийся газ используется для получения электроэнергии, а переработанные бактериями отходы - для удобрения. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 КВт/ч.

Подводя итог, нужно отметить, что на сегодняшний день роль альтернативных источников энергии растёт, что благоприятно сказывается на природных запасах, экологической ситуации в мире. В первую очередь этот рост происходит благодаря странам, где нет достаточных запасов полезных ископаемых, в первую очередь, нефти и газа. Таким образом, можно с уверенностью сказать, что роль альтернативных источников энергии будет повышаться. Эта тенденция будет наблюдаться в основном в странах, где невелики запасы собственных природных ресурсов.

Альтернативные источники энергии — это ветер, солнце, приливы и отливы, биомасса, геотермальная энергия Земли.

Ветряные мельницы давно используются человеком в качестве источника энергии. Однако они эффективны и пригодны только для мелкого пользователя. К сожалению, ветер пока еще не в состоянии давать электроэнергию в достаточных количествах. Солнечная и ветровая энергетика имеет серьезный недостаток — временную нестабильность именно в тот момент, когда она особенно нужна. В связи с этим необходимы системы хранения энергии, чтобы потребление ее могло быть возможно в любое время, но экономически зрелой технологии создания таких систем пока нет.

Первые ветряные электрогенераторы были разработаны еще в 90-х гг. XIX в. в Дании, а уже к 1910 г. в этой стране было построено несколько сот мелких установок. Еще через несколько лет датская промышленность получала от ветряных генераторов четверть необходимой ей электроэнергии. Их общая мощность составила 150-200 МВт.

В 1982 г. на китайском рынке было продано 1280 ветряных турбин, а в 1986 г. — 11 000, что позволило обеспечить электричеством те районы Китая, в которых раньше его никогда не было.

В начале XX в. в России насчитывалось 250 тыс. крестьянских ветряных мельниц мощностью до 1 млн кВт. Они перемалывали 2,5 млрд пудов зерна на месте, без дальних перевозок. К сожалению, в результате бездумного отношения к природным ресурсам в 40-х гг. прошлого века на территории бывшего СССР была разрушена основная часть ветряных и водяных двигателей, а к 50-м гг. они почти совсем исчезли как «отсталая техника».

В настоящее время солнечную энергию используют в некоторых странах в основном для отопления, а для производства энергии — в очень незначительных масштабах. Между тем мощность солнечного излучения, достигающего Земли, составляет 2 х 10 17 Вт, что более чем в 30 тыс. раз превышает сегодняшний уровень энергопотребления человечества.

Различают два основных варианта использования энергии Солнца: физический и биологический. При физическом варианте энергия аккумулируется солнечными коллекторами, солнечными элементами на полупроводниках или концентрируется системой зеркал. При биологическом варианте используется солнечная энергия, накопленная в процессе фотосинтеза в органическом веществе растений (обычно в древесине). Этот вариант годится для стран с относительно большими запасами леса. Например, Австрия планирует в ближайшие годы получать от сжигания древесины до трети необходимой ей электроэнергии. Для этих же целей в Великобритании планируется засадить лесом около 1 млн га земель, непригодных для сельскохозяйственного использования. Высаживаются быстрорастущие породы, такие как тополь, срезку которого производят уже через 3 года после посадки (высота этого дерева около 4 м, диаметр стволика — более 6 см).

Проблема использования нетрадиционных источников энергии в последнее время особенно актуальна. Это, несомненно, выгодно, хотя подобные технологии требуют значительных затрат. В феврале 1983 г. американская фирма «Арка Солар» начала эксплуатировать первую в мире солнечную электростанцию мощностью 1 МВт. Возведение таких электростанций — дорогое удовольствие. Сооружение солнечной электростанции, способной обеспечить электроэнергией около 10 тыс. бытовых потребителей (мощность — около 10 мМВт), обойдется в 190 млн дол. Это в четыре раза больше, нежели расходы на сооружение ТЭС, работающей на твердом топливе, и соответственно в три раза больше, чем строительство гидроэлектростанции и АЭС. Тем не менее специалисты по изучению солнечной энергии уверены, что с развитием технологии использования энергии Солнца цены на нее значительно снизятся.

Вероятно, будущее энергетики — за ветряной и солнечной энергией. В 1995 г. в Индии приступили к реализации программы по выработке энергии с помощью ветра. В США мощность ветряных электростанций составляет 1654 МВт, в Европейском союзе — 2534 МВт, из них 1000 МВт вырабатывается в Германии. В настоящее время наибольшего развития ветроэнергетика достигла в Германии, Англии, Голландии, Дании, США (только в Калифорнии 15 тыс. ветряков). Энергия, получаемая с помощью ветра, может постоянно возобновляться. Ветряные станции не загрязняют окружающую среду. С помощью ветряной энергии можно электрифицировать самые отдаленные уголки земного шара. К примеру, 1600 жителей острова Дезират в Гваделупе пользуются электричеством, которое вырабатывают 20 ветряных генераторов.

Из чего еще можно получать энергию, не загрязняя окружающую среду?

Для использования энергии приливов и отливов обычно строят приливные электростанции в устьях рек либо непосредственно на морском берегу. В обычном портовом волноломе оставляют отверстия, куда свободно поступает вода. Каждая волна повышает уровень воды, а следовательно, и давление остающегося в отверстиях воздуха. «Выдавливаемый» наружу через верхнее отверстие воздух приводит в движение турбину. С уходом волны возникает обратное движение воздуха, который стремится заполнить вакуум, и турбина получает новый импульс к вращению. Согласно оценкам специалистов, такие электростанции могут использовать до 45 % энергии приливов.

Волновая энергия представляется довольно многообещающей формой из новых энергоисточников. Например, на каждый метр волнового фронта, окружающего Британию со стороны Северной Атлантики, в среднем приходится 80 кВт энергии в год, или 120 000 ГВт. Существенные потери при переработке и передаче этой энергии неизбежны, и, по-видимому, лишь третья ее часть может поступать в сеть. Тем не менее оставшегося объема достаточно для того, чтобы обеспечить всю Британию электричеством на уровне существующей нормы потребления.

Привлекает ученых и использование биогаза, который представляет собой смесь горючего газа — метана (60-70 %) и негорючего углекислого газа. В нем обычно присутствуют примеси — сероводород, водород, кислород, азот. Образуется биогаз в результате анаэробного (бескислородного) разложения органики. Этот процесс в природе можно наблюдать на низинных болотах. Воздушные пузырьки, поднимающиеся со дна заболоченных участков, это и есть биогаз — метан и его производные.

Процесс получения биогаза можно разделить на два этапа. Вначале с помощью анаэробных бактерий из углеводов, белков и жиров образуется набор органических и неорганических веществ: кислоты (масляная, пропионовая, уксусная), водород, углекислота. На втором этапе (щелочном или метановом) подключаются метановые бактерии, которые разрушают органические кислоты с выделением метана, углекислого газа и небольшого количества водорода.

В зависимости от химического состава сырья при сбраживании выделяется от 5 до 15 кубометров газа на кубометр перерабатываемой органики.

Биогаз можно сжигать для отопления домов, сушки зерна, использовать в качестве горючего для автомобилей и тракторов. По своему составу биогаз мало отличается от природного газа. Кроме того, в процессе получения биогаза остаток брожения составляет примерно половину органических веществ. Его можно брикетировать и получать твердое топливо. Однако в хозяйственном отношении это не слишком рационально. Остаток брожения лучше использовать в качестве удобрения.

1 м 3 биогаза соответствует 1 л жидкого газа или 0,5 л высококачественного бензина. Получение биогаза даст технологическую выгоду — уничтожение отходов и энергетическую выгоду — дешевое горючее.

В Индии для получения биогаза используется около 1 млн дешевых и простых установок, а в Китае их свыше 7 млн. С точки зрения экологии биогаз имеет огромные преимущества, так как он может заменить дрова, а следовательно, сохранить лес и предотвратить опустынивание. В Европе ряд установок по очистке городских сточных вод удовлетворяет свои энергетические потребности за счет производимого ими биогаза.

Еще одним альтернативным источником энергии является сельскохозяйственное сырье: сахарный тростник, сахарная свекла, картофель, топинамбур и др. Из него методом ферментации в некоторых странах производят жидкое топливо, в частности этанол. Так, в Бразилии растительную массу преобразуют в этиловый спирт в таких количествах, что эта страна удовлетворяет большую часть своих потребностей в автомобильном топливе. Сырье, необходимое для организации массового производства этанола, — это в основном сахарный тростник. Сахарный тростник активно участвует в процессе фотосинтеза и производит на каждый гектар обрабатываемой площади больше энергии, чем другие культуры. В настоящее время его производство в Бразилии составляет 8,4 млн т, что соответствует 5,6 млн т бензина самого высокого качества. В США производится биохол — горючее для автомобилей, содержащее 10 % этанола, полученного из кукурузы.

Тепловую или электрическую энергию можно добывать за счет тепла земных глубин. Геотермальная энергетика экономически эффективна там, где горячие воды приближены к поверхности земной коры, — в районах активной вулканический деятельности с многочисленными гейзерами (Камчатка, Курильские острова, острова Японского архипелага). В отличие от других первичных источников энергии, носители геотермальной энергии невозможно транспортировать на расстояние, превышающее несколько километров. Поэтому земное тепло — типично локальный источник энергии, и работы, связанные с его эксплуатацией (разведка, подготовка буровых площадок, бурение, испытание скважин, забор жидкости, получение и передача энергии, подпитка, создание инфраструктур и т.д.), ведутся, как правило, на относительно небольшом участке с учетом местных условий.

Геотермальная энергия используется в широких масштабах в США, Мексике и на Филиппинах. Доля геотермальной энергии в энергетике Филиппин — 19 %, Мексики — 4 %, США (с учетом использования для отопления «напрямую», т.е. без переработки в электрическую энергию) — около 1 %. Суммарная мощность всех геоТЭС США превышает 2 млн кВт. Геотермальная энергия обеспечивает теплом столицу Исландии — Рейкьявик. Уже в 1943 г. там были пробурены 32 скважины на глубине от 440 до 2400 м, по которым к поверхности поднимается вода с температурой от 60 до 130 °С. Девять из этих скважин действуют по сей день. В России, на Камчатке, действует геоТЭС мощностью 11 МВт и строится еще одна мощностью 200 МВт.