Способы производства и свойства искусственных алмазов. Искусственный бриллиант: описание, свойства и особенности

15.08.2019

В этой статье:

Начали делать не так давно. Этот процесс не является таким уж лёгким, а требует серьезных затрат. Применение такого искусственного кристалла не ограничивается только ювелирным делом, алмазы очень нужны в технике. Например, из них изготавливают специальный режущий инструмент. Для того чтобы понять, что собой представляют искусственные алмазы, нужно для начала разобраться, что такое настоящий алмаз.

Алмаз - самый твердый минерал в мире

Прежде всего, то, что мы видим в ювелирном магазине - это бриллиант. Бриллиант - это алмаз, который прошел специальную предварительную обработку ювелирами. C точки зрения химии, он представляет собой углерод кубической формы и строения кристаллов. Что интересно, углерод в зависимости от того, как построена структура, может выступать в виде многих веществ, которые имеют разные свойства и применение.

Искусственные алмазы

Например, всем известно, что сейчас в мире переходят на нанотехнологии. Нанотехнологиями называют такие технологии, суть которых построена на объектах очень малой величины - тысячных долях микрона. Одними из таких объектов являются нанотрубки. Так вот, наименьшие нанотрубки, а именно, самого маленького диаметра, также являются формой углерода. Дело в том, что один атом вещества может объединяться с пятью другими, что и так представляет собой компактную структуру. Среди атомов, которые обладают такими возможностями, имеет самую маленькую массу, а соответственно и радиус атома.

Если атомы углерода объединяются во что-то похожее на мяч для футбола - это называться фуллеренами. Фуллерены и нанотрубки, а также монослой углерода - графен, за получение которого недавно вручили Нобелевскую премию, в будущем, скорее всего, будут очень широко использоваться в технике. Они интересны своими сверхпрочными свойствами, а также проводимостью, низким сопротивлением и размерами. Наибольшая ценность нанотрубок - выступать как проводниками, так и полупроводниками, в зависимости от того, как ориентированы атомы между собой. За этим будущее электроники.

До сих пор ученые не пришли к однозначному выводу о том, . Основная версия говорит о том, что кристаллы формируются глубоко в Земле (более чем в 200 километрах) под большим давлением и огромной температурой. А потом уже магма их выбрасывает на поверхность. Существует также версия, что алмаз представляет собой внеземную структуру и прилетает на Землю вместе с метеоритами. Еще одна версия тоже говорит о космическом происхождении: якобы бриллианты формируются при падении метеорита, когда создается высокое давление.

Камни очень редкие и красивые. Ценятся они не только за красоту, но и за то, что обладают уникальными свойствами:

  • алмаз имеет самую высокую твердость среди минералов;
  • температура его плавления доходит до 4000 градусов;
  • теплопроводность самая высокая среди всех известных твердых тел;
  • он относится к диэлектрикам;
  • имеет уникальное преломление света, под действием различных лучей может начать светиться;
  • не растворяется в кислоте.

История получения минералов

В 1797 году было открыто, что алмаз состоит из чистого углерода. С тех пор начались попытки повторить процесс в условиях лаборатории. Наиболее успешными стали работы Ханней и Муассана, в 1893 году они нагревали их до температуры 3000 градусов Цельсия с высокой скоростью нагрева и добавлением железа. В отличие от Ханнея, который использовал трубку для нагрева, Муассан использовал электродуговую печь со стержнями углерода, располагавшимися внутри блоков извести.

Расплавленное железо после нагрева быстро охлаждали водой. Все это делали для того, чтобы обеспечить высокое давление. Подобные эксперименты повторялись и в дальнейшем. Например, в 1909 году успеха достиг Крукс и через несколько лет об этом заявил. Однако позже такое заявление было опровергнуто.

Первый официальный искусственный алмаз был создан в 1926 году. Для его создания были объединены все методы, которые перечислены выше. Сейчас этот образец до сих пор хранится в музее в Соединенных Штатах Америки.

Но это еще был не тот образец, который можно было бы поставить на серийное производство. Наибольший вклад в создание и разработку методов получения бриллиантов вложил Сэр Чарльз Алджернон Парсонс - именно он на протяжении 40 лет пытался повторить самые первые опыты Ханнея и Муассана. Он был очень кропотливым и сохранил полученные образцы для дальнейших исследований. Позже заявил, что всё, что было создано до этого, не является искусственным бриллиантом.

В 1941 году к разработке методики получения алмазов присоединяется компания General electrics. У них получилось нагреть углерод до 3000 градусов и получить давление 5 ГПа. Однако им помешала Вторая мировая война, и только через 10 лет они возобновили работы по проекту. Во время этих разработок использовались наковальни из карбида вольфрама в гидравлическом прессе. Однако все условия синтеза были настолько неопределёнными, что эксперименты повторять не удавалось.

В 1954 году был создан первый искусственный алмаз, который годился для коммерческого синтеза. Однако он был очень маленького диаметра, всего доли миллиметра, поэтому не мог быть использован в украшениях, зато хорошо подходил для промышленности. Описание работы по его созданию было опубликовано в самом престижном научном журнале Nature.

С 1953 года компания ASEA - производитель электроники из Швеции - тоже начала заниматься независимым синтезом алмазов. Работа шла, используя громоздкий аппарат, который поддерживал давление на уровне 8,4 ГПа на протяжении часа. Но им тоже удалось получить экземпляры только маленького размера.

В Корее в восьмидесятых годах появился конкурент по созданию алмазов - компания «Ильин Алмаз». Она заполучила коммерческую тайну от General Electric и смогла синтезировать синтетические алмазы в 1988 году. После этого вышел и Китай на рынок с огромным количеством предприятий.

Как сегодня выращивают алмазы?

В промышленном производстве сейчас более широко используется технология выращивания кристаллов при высоких давлениях и температурах, называемая HPHT, а также технологии CVD. Менее употребляемыми методиками считаются синтез монокристаллов алмаза при взрыве и метод получения микронных алмазов из суспензии частиц графита в органических растворителях под действием ультразвука.

Технология HPHT включает в себя получение алмазов при температуре 1500 градусов и давлении 50 атмосфер. Установка, которая представляет собой гидравлический пресс, сжимает специальный контейнер, внутри которого находится металлический расплав и графит. В качестве расплава используется железо, никель кобальт или другие металлы. На подложке размещаются затравки - небольшие кристаллы алмаза. Сквозь камеру проходит ток, который нагревает расплав до нужной температуры. В таком случае металл служит растворителем или катализатором кристаллизации.

Кристаллы выращиваются на заправке в форме алмаза. Процесс выращивания более-менее крупного или нескольких мелких кристаллов длиться в среднем около 12 суток. Сейчас производство искусственных алмазов доходит до выпуска миллиардов каратов в год. В 1970, используя эту технологию, впервые научились добывать камни маленького веса и качества.

С 1960-х годов начали разработку более дешевой технологии получения алмазов CVD, что означает Chemical Vapor deposition, которая представляет себя осаждение из фазы газа.

Синтез проходит при осаждении углерода на подложку в среде из водородного газа, который ионизируется с помощью излучения и высоких температур. При осаждении поликристаллический алмаз (кремний) получает пластины, имеющие ограниченное применение в электронике и оптике.

Скорости роста абсолютно разные, которые могут достигать и 100 микрометров в час. Толщина пластин обычно ограничена 2-3 миллиметрами, поэтому полученные алмазы можно использовать в качестве ювелирных, но не превышающих 1 карата. Возможности этого момента начали популяризоваться в 2000-х и привлекли внимание как стартапов, так и больших корпораций, что дало сильный толчок к развитию метода.

Потенциал HPHT в последнее время был сильно недооценен, и все внимание и ресурсы были сосредоточены на совершенствовании метода химического осаждения. Эта технология, как казалось, была неприменима для выращивания кристаллов большого размера и высокого качества. Но в последнее время технологии совершенствуются и получаются искусственные алмазы такого качества и размера, какими раньше могли быть только натуральные.

Которые чаще всего имеют прозрачные цвета, заключается еще в том, что синтетические обладают легким оттенком. Азот, который рассеивается в структуре решетки во время роста алмаза, поглощает голубой цвет, в результате чего синтетический алмаз приобретает желтоватый оттенок.

Другие заменители бриллиантов

Помимо искусственных бриллиантов, широко используются их заменители, которые вошли в ювелирную промышленность в семидесятых годах прошлого века. Сначала Физический институт Академии Наук получил фианиты, которые представляли собой . Это, так сказать, стекляшка среди алмазов. Позже появились такие , как хрусталь, циркон, белый сапфир. Особенной популярностью пользовались такие камни в изготовлении перстней в викторианском стиле.

Также появился такой заменитель бриллиантов, как нексус, который представляет собой соединения углерода с другими веществами и отличается прочностью и твердостью.

Для изготовления фианитов используется диоксид циркония. Он считается наименее прочными из всех заменителей бриллиантов, а соответственно, и самым дешевым. Муассанит, который синтезируется из карбида кремния и является самым прочным из всех камней, похожих на бриллианты, и обладает такими внешними характеристиками, что его даже сложно отличить от настоящего камня. Отличие всех искусственных камней от натуральных, которое можно заметить невооруженным глазом - это стоимость, для остальных отличий необходимо оборудование и опыт.

Однако иногда синтетические бриллианты по цене не уступают натуральным, потому что огромные затраты расходуются на их производство. Основное отличие искусственного бриллианта от натурального в том, что в натуральных бриллиантах присутствуют неоднородности и включения, которые отсутствуют у искусственно полученных минералов.

Приобрести украшения из синтетического бриллианта можно, и это будет значительная экономия по сравнению с натуральным. Если вы хотите купить украшение максимально недорого, то отдавайте предпочтение фианитам. Их сияние не уступает натуральному бриллианту, но у него немного хуже характеристики прочности и твердости, что влияет на эксплуатационные свойства. Муассанит обладает наиболее ярким блеском, что в некотором роде создает эффект дискотеки. Фианит не обладает таким сиянием, как алмаз искусственный или муассанит, но лучше отбрасывает блики.

Муассаниты практически не поддаются внешнему воздействию, а вот фианиты со временем царапаются и впитывают масло. Кроме того, если за ними не ухаживать, на поверхности камня скапливаются царапины, он становится мутным.

Таким образом, технология получения бриллиантов до сих пор находится в стадии разработки. В отличие от рубинов и сапфиров, получить бриллиант любого размера или качества невозможно, и часто он может быть дороже оригинального, так как затрачивается огромное количество времени и ресурсов.

Искусственные бриллианты – прекрасная альтернатива для тех, кто не может позволить себе натуральные камни, при этом за гораздо меньшую цену вы получаете великолепное украшение, изготовленное из экологически чистого материала. На сегодняшний день различают два основных вида искусственных бриллиантов - синтетические камни и так называемые, заменители алмазов.

Процесс создания синтетического алмаза был разработан в 1892 году французским химиком Анри Муассаном (Henri Moissan). Крошечные частички синтетического алмаза образовывались при нагревании угля или углеродного материала в чугунном тигле до экстремально высоких температур (4000¼ C). На сегодняшний день в изготовлении искусственных бриллиантов используют два основных метода: воздействие на материал высоким давлением при нагреве до высоких температур (HTHP) и метод химического осаждения из газовой фазы (CVD).

Температура плюс давление

Данная технология известна также под названиями HTHP и «GEPOL». В данном случае используется специальная установка в виде тетраэдрического пресса или шестиступенчатого кубического пресса высокого давления. Алмазное «семечко» помещают в рабочую камеру, которая находится внутри пресса, и подвергают воздействию высокой температуры и высокого давления, при этом создаются условия, максимально приближенные к естественным характеристикам процесса образования алмазов в природе. В отличие от натуральных алмазов, температурно-прессовой метод позволяет «вырастить» искусственный алмаз за семь-десять дней. Нередко дополнительная обработка синтетических алмазов температурой и давлением применяется для улучшения характеристик камня и достижения максимальной схожести с натуральным аналогом.


Метод химического осаждения из газовой фазы (CVD)

Разработанный в 80-х годах прошлого века метод предполагает условия выращивания кристалла при более низком давлении. В рабочую камеру помещается частица исходного материала, которая затем подвергается комбинированному воздействию температуры и давления, в то время как соединение выпаренной углеродной плазмы и водорода наслаивается на субстрат. Углеродные газы заряжаются микроволновой энергией и притягиваются к исходному материалу. При использовании метода химического газофазного осаждения формирование синтетического алмаза занимает несколько дней.


Выращенные в лабораторных условиях алмазы не уступают натуральным в твёрдости, кливаже (спайности), коэффициенте преломления, световой дисперсии, удельном весе и сиянии. Также как и натуральные алмазы, синтетические варианты могут содержать небольшие включения.

Цветовая гамма и оптические характеристики искусственных бриллиантов

В отличие от натуральных бриллиантов, которые в большинстве своем не имеют цвета, синтетические бриллианты обладают легким желтоватым оттенком и виной тому включения азота, которые рассеиваются в структуре кристаллической решетки во время фазы роста кристалла. Включения азота поглощают голубой спектр светового луча, в результате чего кристалл приобретает желтоватый оттенок.

Заменители бриллиантов

Заменители бриллиантов широко используются в ювелирной промышленности с 1970-х годов, вначале бриллианты заменяли кубически стабилизированным цирконом (фианитом), позже появились такие заменители как муассанит и Nexus. Более сотни лет назад для имитации бриллиантов использовали хрусталь, циркон и белый сапфир, особенно популярны эти камни были в изготовлении перстней в викторианском стиле.

Заменитель бриллиантов Nexus представляет собой соединение углерода с другими веществами. Такие заменители отличаются прочностью и твердостью и сопровождаются утроенной пожизненной гарантией прочности. Материалом для изготовления фианитов служит диоксид циркония. Среди всех заменителей бриллиантов фианит считается наименее прочным и, соответственно, одним из самых дешевых.

Муассанит, который синтезируют из карбида кремния, славится своим блеском и сиянием. Высокая прочность этого заменителя бриллианта, безусловно, отразилась и на его цене, из всех заменителей, муассанит самый дорогой, к тому же этот кристалл обладает определенными внешними особенностями, которые позволяют отличить его от натурального бриллианта.

При сравнении искусственных и натуральных бриллиантов разница, которая видна невооруженным глазом, – это стоимость кристаллов, однако стоит отметить, что белые (бесцветные) синтетические бриллианты нередко не уступают в цене натуральным бесцветным алмазам. Еще одно отличие: в натуральных бриллиантах присутствуют включения и неоднородность, в то время как синтетические варианты практически безупречны.

Сравнительная характеристика

Если вы решили приобрести украшение с искусственным бриллиантом, вам определенно удастся сэкономить кругленькую сумму, но если вы хотите максимально снизить затраты, тогда обратите внимание на изделие с заменителями бриллиантов, они стоят намного дешевле, чем вещицы с искусственными алмазами.

Заменители уступают натуральному бриллианту в прочности и твердости, но в плане сияния и блеска могут составить достойную конкуренцию натуральным кристаллам. К тому же заменители совершенно чисты и лишены каких бы то ни было включений. Муассанит обладает наиболее ярким блеском и интенсивностью бликования, что в некотором роде создает нежелательный для некоторых покупателей эффект «дискотечного шара», фианиты не обладают таким сиянием, как бриллианты, но лучше отбрасывают блики.

Украшение с алмазами - это, конечно, мечта каждой амбициозной леди. Однако не дефицит подобных ювелирных изделий стал причиной, по которой многие ученые мира десятилетиями трудились в поисках способа, как произвести на свет искусственный алмаз. Он жизненно необходим во многих отраслях (оптика. медицина, микроэлектроника), причем целью создаваемой технологии являлось то, чтобы искусственные алмазы не только не утратили свойств натурального драгоценного камня, но и превзошли его по совершенству кристаллической решетки.

На сегодняшний день известно как минимум четыре способа, как создать искусственный алмаз. Какой из них самый прогрессивный, трудно сказать, потому как один слишком дорогостоящий, недостатком другого является грязный цвет кристаллов, третий имеет существенное отличие от натурального по форме кристаллов. Поэтому технология производства выбирается в зависимости от того, на какие цели пойдет камень. Кристаллическая решетка природного алмаза представляет собой тетраэдр, по прочности ему нет равных, а в способности преломлять свет он значительно превосходит стекло:алмаз - 2,42, стекло - 1,8.

Если рассматривать самый надежный способ получения синтетических алмазов, то это будет путь, наиболее приближенный к природным условиям. Однако он является и самым дорогостоящим. Дороговизна прежде всего в самой установке - пресс с высоким давлением. В него помещается цилиндр, а в него уже специальная камера, выполненная из карбида тантала с кристаллическим углеродом (графит). Именно так находится алмаз в толще земли. Цилиндр снабжен специальными отверстиями, через которые подается вода под высоким давлением и проникают хладагенты.

В процессе многоступенчатой технологии графиту предстоит стать алмазом. Сначала под высоким давлением подается мощным потоком вода, которая сжимает графит. После этого он подвергается заморозке до -12 градусов Цельсия. Процесс сжатия не только не прекращается на протяжении всего технологического процесса, а, напротив, увеличивается за счет заморозки с 2-3 тысяч атмосфер вначале до 20 тысяч в конце. Далее вступает на доли секунды электрический ток, и наконец ледяной затвор размораживается и на свет появляется искусственный алмаз.

Полученный алмаз в точности повторяет естественную кристаллическую решетку тетраэдра, но обладает несколько грязноватым оттенком. Однако по прочности аналог гораздо превосходит натуральный. Таким способом получают камень для технических целей. Другая технология тоже достаточно проста, когда алмазы выращиваются в метане без доступа воздуха. Без специальной аппаратуры здесь не обойтись. Синтетический алмаз в итоге имеет кубическую форму кристаллов, абсолютно идентичен по прочности, но черного цвета.

Чтобы его получить, в специальную емкость аппарата погружают натуральный алмаз в мизерных количествах, как затравку. Его раскаляют и постепенно начинают подачу углерода (0,2% каждый час). Технология взрыва дает чистейшие алмазы по цвету, прочности, и форме кристаллической решетки. Для их получения используют все тот же графит, который предварительно разогревается и в момент взрыва превращается в алмазную крошку. Именно в крошку, потому как при таком способе выход кристаллов очень велик, но они получаются мелкими.

Такие же мелкие искусственные алмазы получают при низких температурах. В этой технологии используют специальный металл-катализатор, который и позволяет существенно снизить давление и температуру. Как правило, в камеру помещают графит, растворитель, железо, кобальт, никель. Алмаз слой за слоем "растет" в прослойке между раскаленным графитом и пластиной-катализатором. Так получают алмазы для технических целей. В течение каждого отдельного цикла вырастает до 50 гр.

В зависимости от используемого катализатора, алмазы различаются по цвету. Так, примесь никеля дает зеленый оттенок, с помощью бериллия получают голубые алмазы. Можно получать и другие цвета: белый прозрачный и матовый, желтый. Низкотемпературный способ придает синтетическим алмазам квадратную форму. Прочность получается выше, чем у природного алмаза. Если поместить в камеру крошку корунда вместе с хромом, а в качестве катализатора использовать чистый корунд, то на выходе удастся получить идеальный рубин.

Если добавить к этому составу железо и титан, то можно получить сапфир. Температура понадобится 600 градусов по Цельсию, а давление всего 1,5 тысячи атмосфер. Современные технологии позволяют, таким образом, создавать драгоценные камни, которые по внешним признакам не сможет отличить от натуральных даже профессионал-ювелир. Конечно, если взять в руки высокоточные приборы, то примеси удастся обнаружить. Но невооруженным глазом это сделать не удастся.

Создать все вышеупомянутые технологии позволили знания о том, что по сути природный алмаз - это всего лишь углерод. Таким же чистым углеродом являются уголь древесного происхождения и графит. Поэтому последний чаще всего превращается в драгоценные алмазные кристаллы путем применения одного из способов. Известно, что углерод может быть в твердом, газообразном и жидком состоянии. Изучив временные характеристики этих состояний и использовав давление и изменения температуры, теперь стало возможным получать искусственные алмазы.

Сегодня человечество научилось создавать несколько разновидностей искусственных бриллиантов, наилучшим из них по праву считается муассанит. Ценность алмаза и получаемого после его огранки бриллианта с давних пор подталкивала людей на поиск и изготовление достойного ему аналога. Так как природа одарила алмаз множеством характеристик, на протяжении нескольких сотен лет эта задача была непосильна, а все попытки замены выглядели лишь жалкими подделками.

Как и из чего получают искусственные бриллианты

Главная проблема при создании алмазов - длительность и сложность процесса. В природных условиях камень образуется тысячи лет под колоссальным давлением от 45000 до 60000 атмосфер и при температуре свыше 900 градусов, поэтому повторить весь процесс в точности с природным практически невозможно.

Первое документальное описание попытки синтезировать бриллианты датируется 1823 годом, когда наш соотечественник Василий Каразин в результате опытов с нагреванием и перегонкой сухой древесины получил неизвестные кристаллы.

Однако официально считается, что впервые камень, с наиболее похожими на бриллианты свойствами, открыл французский исследователь и нобелевский лауреат Анри Муассан. В 1905 году полученный им кристалл карбида кремния, в честь создателя, начал именоваться муассанит. Карбид кремния встречается в природе и за свое космическое происхождение часто именуется звездной пылью, но его естественный размер очень мал и имеет специфическую окраску.

Не оставляя желание создать идеальные бриллианты в лабораторных условиях ученые научились синтезировать более крупные и чистые камни. Искусственно выращенный муассанит нередко называется карбокорунд.

Большой вклад в создание искусственных бриллиантов внесли российские и советские ученые. Основную массу синтетических камней производят по разработанным ими технологиям. Сегодня муассанит получают нескольким способами, однако наиболее чистые и качественные кристаллы карбокорунда рождаются путем многочасового нагревания при температуре 2 400 ºС кристаллического карбида кремния с участием металлического катализатора (железа).

В промышленных масштабах искусственные алмазы, имеющие крупнозернистую структуру, начали производить с середины прошлого века.

Кроме описанного выше термобарического метода, при их создании используется способ осаждения кристаллов из плазмы газообразного углерода под воздействием электрической дуги и редкая детонационная технология, использующая энергию взрывной волны.

Для выращивания бриллиантов в лабораторных условиях используют вещества с высокой концентрацией углерода: очищенную сажу или уголь, графит и т.д. В зависимости от того каким образом был получены такие бриллианты, существует деление на НРНТ-и CVD-алмазы.

Сфера применения и ценность

В большинстве случаев бриллианты, полученные синтетическим путем, автоматически воспринимаются, как подделки и вызывают негативную реакцию. Такое отношение абсолютно неоправданно, так как искусственное выращивание в лабораторных условиях кристаллов имеющих физические характеристики алмазов несет неоценимый вклад в промышленность, развитие высоких технологий и ювелирное дело.

50% используемых в мире бриллиантов имеют синтетическое происхождение и созданы человеком. При этом искусственные алмазы полностью удовлетворяют нужды промышленности, где их доля составляет более 90 % от общего объема используемых камней. Применение алмазов человеком обусловлено их уникальными свойствами:

  • исключительная твердость кристаллов применяется для шлифовки, резки различных материалов и бурения породы;
  • благодаря долговечности алмазы незаменимы при производстве высокотехнологичного оборудования, компьютерных чипов и микросхем;
  • необработанные бриллианты активно используются в работе лазеров и медицинском оборудовании;
  • муассанит наивысшего качества и чистоты активно применяется в ювелирном деле.

Цена на искусственно выращенные алмазы варьируется в зависимости от вида и качества камня.

Один из самых дешевых вариантов - фианит, средняя цена за карат у которого начинается с нескольких долларов.

Для сравнения, чек на искусственное творение такого же размера может быть в десятки раз больше. Так, бесцветный муассанит будет не намного дешевле природного бриллианта, а в ряде случаев может быть дороже чем прототип.

Одним из главных критериев для определения цены, так же как и у натуральных алмазов, служит цвет. Чем труднее получить тот или иной оттенок, тем дороже будет конечная стоимость. Из-за применения железосодержащих катализаторов муассанит приобретает желтоватый оттенок. Добиться идеальной прозрачности довольно сложно, поэтому камни чистой воды стоят дороже, чем бриллианты цвета шампанского.

Отличие от природного камня

Муассанит считается самым совершенным аналогом бриллианта, который по своим характеристикам не только повторяет, но и превосходит природный прототип и имеет лишь небольшие отклонения, позволяющие отличить его от натурального алмаза. Одно из главных отличий, по которому можно узнать муассанит, кроется в его внешних характеристиках.

Всем известно, что ценность бриллианта кроется не только в его редкости и твердости, но и в высоком коэффициенте преломления света равном 2,418. Показатель преломления которым обладает муассанит выше на 25 %. Поэтому лабораторный камень с правильной огранкой сверкает в лучах света гораздо ярче. Ограненный алмаз из земных недр также проигрывает выращенному человеком бриллианту в дисперсии, и искрит в десятки раз меньше.

Долгое время не удавалось получить муассанит идеально прозрачного цвета и хотя в сравнении с бриллиантом он не имеет посторонних вкраплений, цвет его всегда отличался желтизной. Несколько лет назад эта проблема была решена и теперь в соревновании чистоты естественные алмазы также проигрывают.

Строение карбокорунда очень близко к бриллиантам, поэтому далеко не каждый прибор может выявить различия между этими близнецами.

Даже опытные ювелиры и специалисты с большим стажем, для того чтобы уверенно говорить о бриллианте как о природном, проверяют камни сразу по нескольким показателям, среди которых: твердость, удельная масса, определение коэффициента отражения, анализ электропроводности и разнообразные оптические тесты.

Чаще всего разницу можно заметить визуальным сравнением двух камней с одинаковой каратностью. Обычно муассанит выгодно отличается и выглядит более искристым и блестящим. Но и этот факт не всегда позволяет определить со 100% точностью, где природные бриллианты, а где нет.

Использование высокотехнологичных бриллиантов в ювелирном деле

Несмотря на то, что муассанит появился совсем недавно, он уже имеет популярность не только как аналог бриллиантов, но и как вполне самостоятельный камень с отличными ювелирными характеристиками, которые встречаются только в алмазах наивысшей пробы. Развитие технологий ведет к тому, что вскоре человек научится контролировать появление цветных алмазов высокотехнологичным путем, что повлечет рождение новой эпохи в ювелирном искусстве. А возможность замены природного камня искусственными бриллиантами рано или поздно снизит рыночную стоимость украшений и сделает их более доступными.

Уже сейчас по своим эстетическим характеристикам лабораторный алмаз не имеет себе равных и не выглядит как имитация.

Ограненный муассанит заслуживает оправы из самых дорогих драгоценным металлов, так как искрится и переливается не хуже бриллиантов. Особенного оптического эффекта сияния и глубины удается добиться в оправе из белого золота, платины и серебра. Искусно ограненный муассанит выглядит благородно в кольцах, колье, браслетах, серьгах и во многих других украшениях. Его роскошный блеск, по сравнению с «более вечерними» бриллиантами, раскрывается в любое время суток.

Прекрасным ювелирным изделиям с такими искусственными бриллиантами, как муассанит покорились практически все города мира, в том числе и Москва. Разнообразие украшений настолько велико, что удовлетворяет вкусам самых взыскательных покупателей.

Аналог настоящих драгоценных алмазов — искусственные алмазы. Издавна известно, что переливы бриллиантовых граней обладают магическими и чарующими свойствами. Но, так как природные алмазы — самые дорогие камни, приобрести бриллиантовые украшения многие попросту не могут. Благодаря аналогам как женщины, так и мужчины могут насладиться красотой и шиком украшений из искусственных камней. Помимо этого, алмазы применяются не только для изготовления ювелирных украшений, но и во многих отраслях жизни человека: наука, техника, медицина. Использовать качественные и драгоценные алмазы в промышленности не выгодно. Для этого применяются дефектные камни, которые не представляют особой ювелирной ценности, или искусственно выращенные алмазы. Название «алмаз» в переводе с древнего индийского языка обозначает «неразбиваемый». Другая версия гласит: название произошло от греческого слова «адамас», что значит «непреодолимый».

Особенности искусственных алмазов

В 1993 году впервые на мировом алмазном рынке начали появляться искусственные камни как экспериментальные образцы. Часть их направили на исследование в авторитетную лабораторию Геммологическиго института США, где ученые сделали вывод: отличие искусственных алмазов от природных камней довольно существенное, но не каждый ювелир или обычный потребитель сможет идентифицировать и отличить настоящий камень от поддельного. Главное отличительное свойство синтезированных искусственных алмазов — это чистота и твердость. Искусственный алмаз — самый твердый в мире камень. Природные алмазы могут иметь погрешности и дефекты (трещины, замутнения или вкрапления), чего нельзя сказать об искусственных камнях.

Как известно, настоящий алмаз обладает магическими свойствами, помогает защитить человека от «нехороших» взглядов и мыслей, уравновешивает нервную систему. Специалисты астрологии уверяют, что искусственный алмаз также излучает положительную энергию, которая помогает в трудные для человека минуты принять верное решение или сделать правильный выбор. Независимо от знака зодиака как природные, так и выращенные искусственно алмазы можно носить на теле или просто иметь дома в шкатулке. Разнообразие украшений из искусственных камней сегодня достаточно велико, да и отличить камни от настоящих драгоценностей на первый взгляд совершенно невозможно.

Способы выращивания синтетических алмазов

Синтетические экземпляры выращиваются в лабораториях в специальных условиях с применением высокоточного и высокотехнологического оборудования. Но для этого процесса не нужны тысячи лет, как для образования природных камней. Оттенки и размеры специалисты могут выбирать самостоятельно. Один из методов, применяемый для выращивания искусственных алмазов, это температурный градиент с применением особых тубусов. В них помещают следующие ингредиенты:

  • графитовое порошкообразное вещество;
  • металлические специальные сплавы (они выступают как катализирующие вещества);
  • затравки будущих искусственных камней.

Капсула находится под прессом (около 3000 т) в течение 10 суток. Расти начинает в том месте, где оказывается самое высокое давление. Благодаря высокой внутренней температуре (почти 1500° С) металл плавится, растворяя в себе графитный порошок. Разница между температурами создает определенное давление, которое способствует движению полученной массы к «зародышу», где и происходит ее осаждение.

Еще одна методика выращивания лабораторных камней называется CVD-методом (газовое осаждение). Методика заключается в засевании специальной пластины (подложки) алмазными «зародышами». Эту пластину помещают в специализированную установку, которая предварительно откачивается до высокого вакуума. Затем камеру наполняют микроволновыми лучами и газами. Плазма в момент выращивания алмазов достигает определенной температуры (около 3100° С).

Под действием температуры происходит разложение газов в плазму, а молекулы углерода, которые адсорбируются из метана, осаждаются в виде искусственных алмазов на пластине.

Кристаллы имеют эквивалентные связи, этим и объясняются их прочность и твердость. Для искусственного выращивания используют графит, сажу, сахарный уголь и различные вещества, богатые углеродом.

Выращенные алмазы имеют несколько названий, но в основном их принято назвать искусственными или синтетическими, хотя в научной литературе можно также встретить такие названия, как:

  • НРНТ-алмазы;
  • CVD-алмазы.

Ученые предпочитают называть их «лабораторными камнями» или «выращенными алмазами в лабораторных условиях».

Чем алмаз синтетический отличается от природных камней?

Внешний вид искусственных алмазов не уступает природным драгоценным камням, но если учитывать их стоимость, то она намного ниже. Синтетические камни лучше поддаются процессу огранки, поэтому даже самые маленькие кристаллы могут похвастаться безупречной огранкой. Помимо этого, небольшие синтетические камни намного прочнее природных, поэтому настоящих алмазов небольших размеров на полках ювелирных магазинов практически не встретить: процесс извлечения их из руды очень трудоемкий. С помощью синтетических небольших камней ювелиры создают немассивные, очень красивые украшения с алмазной вышивкой, что намного увеличивает потребительские пожелания.

Область применения искусственных алмазов

Благодаря своей твердости искусственные, выращенные камни широко применяются для резки и шлифовки различных поверхностей. Сегодня практически все пилы, сверла, абразивы, шлифовальные и режущие инструменты имеют детали с искусственной алмазной насечкой. Также широко применяются искусственно выращенные камни как полупроводники при производстве микросхем. Торговые алмазные рынки отличительны от ювелирных рынков, потому что лабораторный камень, помимо твердости, имеет отличную теплопроводность, которая в несколько раз превышает теплопроводность такого материала, например, как медь.

Основные потребители искусственных камней — это ювелиры, производители чипов для компьютерного оборудования, организации, оказывающие бурильные услуги.

Сегодня очень распространены алмазные порошки для полировки поверхностей драгоценных камней, золотых и серебряных оправ, кремниевых пластин.

Самая большая ценность лабораторных камней, полученных методом CVD, заключается в использовании их в высокотехнологических сферах деятельности человека. Искусственные (синтетические) камни применяются при изготовлении мощнейших лазерных лучей (которые на сегодняшний день используются в медицине для лечения смертельных заболеваний), создании мобильных портативных устройств.

Наибольшие потенциалы для синтетических камней находятся в области компьютерных технологий. Детали, которые они содержат, считаются более долговечными, они могут беспрерывно работать при очень высоких температурах, чего не скажешь, например, о кремниевых компьютерных чипах. Искусственный алмаз может выдержать высокие температуры, что обеспечивает его продуктивность, потому что от этого зависят срок службы, частота работы техники, скорость. Количество искусственных алмазов, которое производится ежегодно, это почти 5 миллиардов карат.

Ученые проводят постоянные исследования, которые уже на сегодня позволили сделать выводы о том, что искусственные алмазы будут применяться для получения изображений под водой, изображений в области медицины, для детекторов в большом адронном коллайдере, в ядерных исследованиях.

Помимо всего вышеперечисленного, искусственные алмазы широко применяются в ювелирных украшениях, что позволяет многим женщинам насладиться ненастоящими камнями, но практически не отличающимися от природных.