Как накопить и сохранить энергию из возобновляемых источников. Аккумулирование горячей воды

29.07.2019

Устройства для преобразования возобновляемой энергии по сравнению с установками на обычном и ядерном топлив различаются по требованиям к аккумулированию и передаче на расстояние. Такие особенности возобновляемых источников, как низкая интенсивность и рассеянность, делают для них предпочтительным децентрализованное потребление. Более того, энергию от этих источников часто не нужно будет передавать на большие расстояния, так как источники уже распределены в пространстве.

Так как полезность устройств для преобразования возобновляемой энергии основана на переработке независимых от нас естественных потоков, существует проблема приведения в соответствие выработки энергии и потребности в ней в рамкам временного спроса, т.е. в выравнивании скорости потребления энергии. Последняя изменяется во времени в масштаба месяцев (например, для обогрева жилищ в зонах умеренного климата), дней (например, для искусственного освещения) и даже секунд (в моменты включения крупных нагрузок). в противоположность энергетике на традиционном топливе получаемая из окружающей среды мощность возобновляемых источников нам не подконтрольна.

У нас есть выбор: либо подгонять нагрузку к интенсивности. доступной для преобразования возобновляемой энергии, либо накапливать энергию для последующего использования. У нас на выбор самые различные способы аккумулирования:

¾ химические;

¾ тепловые;

¾ электрические, в форме потенциальной или кинетической энергии.

Аккумулирование энергии - не новая концепция в энергетике. Ископаемые топлива в этом смысле являются эффективным аккумулятором с высокой плотностью энергии. Однако по мере того, как источники топлива становятся все менее доступными и все более дорогими, появляется необходимость в развитии других методов аккумулирования, и в качестве одного из них - производства возобновляемого топлива.

5.2. Химическое аккумулирование.

Энергия может удерживаться в связях многих химических элементов и выделятся в процессе экзотермических реакций, из которых наиболее известно горение. Иногда необходимо применить для запуска такой реакции предварительной нагревание или катализаторы (например, энзимы). Биологические компоненты представляют особый случай. Здесь речь идет лишь о неорганических соединениях, являющихся наиболее распространенными аккумуляторами, энергия которых выделяется при сгорании в воздухе.

Водород. Может быть получен путем электролиза воды с помощью любого источника тока. В виде газа он может быть накоплен, передан на расстояние и сожжен для получения тепловой энергии. Единственным продуктом сгорания водорода является вода: не образуется никаких загрязняющих веществ. Энтальпия образования водорода Н=-242 кДж/моль, т.е. при образовании 1 моля Н2 О (18 г) выделяется 242 Дж тепловой энергии. Хранить водород в больших количествах непросто. Наиболее обещающий способ - использование подземных каверн, подобных тем, из которых добывается природный газ. Но хранение газа - даже под высоким давлением - требует значительных объемов. Необходимо заметить, что водород можно передавать через разветвленную сеть трубопроводов, используемых сейчас для подачи природного газа во многих странах мира. Кроме того, существует возможность с большой эффективностью использовать его для

Рис. 5.1 Грунтовый аккумулятор тепла

непосредственного получения электроэнергии с помощью топливных элементов.

Аммиак. В отличие от воды аммиак может быть разложен на составляющие элементы при доступных температурах:

N2 + 3H2 2NH3

В сочетании с принципом теплового двигателя эта реакция может стать основой наиболее эффективного способа непрерывного получения электроэнергии за счет использования солнечного тепла.

5.3. Аккумулирование тепловой энергии.

Использование низкотемпературного тепла составляет существенную часть мирового потребления энергии. Существенно не обязательно использовать для обогрева высокотемпературные источники энергии, которые гораздо лучше сберечь для других целей. Для обогрева жилищ больше подходят пассивные приемник солнечного тепла в сочетании с тепловыми аккумуляторами, поддерживающими комфортные условия по ночам и в пасмурные дни. Более того, именно в тех случаях, когда, энергия используется при низких температурах, характерных для среды,

ее особенно ценно

накапливать в форме тепла. Тепловое аккумулирование плодотворно и при использовании "отходов"

тепла, возникающих в процессе работы различных установок. Запастись на три месяца теплом для обогрева жилого дома - вполне решаемая задача. Правда при этом важно не только сделать хороший проект, но и грамотно его реализовать.

В частности, необходимо качественно выполнить теплоизоляцию и предохранить дом от сырости, снабдить его управляемой системой вентиляции (возможно, с рециркуляцией тепла), использовать все "отходы" тепла от освещения, приготовления пищи, жизнедеятельности самих обитателей. Существуют примеры подобных высокотехнологичных домов, обладающих кроме всего прочего прекрасной архитектурой и создающих идеальные условия для жизни. Отметим, что в качестве аккумулирующей тепло среды предпочтительнее использовать вместо воды скальные породы.

На рис.5.1. показан пример использования аккумулятора тепла в виде грунтового теплообменника.

В течение короткого периода продолжительностью до четырех дней сами здания можно использовать в качестве аккумуляторов тепла. При проектирование зданий для стран с жарким климатом важное применение по аналогии с созданием запасов тепла может найти аккумулирование холода.

Известно, что использование аккумулирования тепла в широком масштабе высокоширотными морскими странами позволило бы решить проблемы снабжения теплом за счет развития ветро- и волноэнергетики. Оба эти источника наиболее производительны зимой, а их мощность, хотя и изменяется периодически час от часу, редко существенно падает более чем на несколько дней. Значительно большей теплоемкостью в ограниченном интервале температур по сравнению с системами использующие поглощение тепла, обладают материалы, при изменении температуры изменяющие фазовое состояние. Например, глауберову соль (Na2 SO4 10H2 O) можно использовать для аккумулирования тепла уже при комнатной температуре. При 32о С она разлагается на насыщенный раствор N2 SO4 с выпадением части Na2 SO4 в

осадок. Эта реакция обратима и дает 250 кДж/кг ≈ 650 МДж/м3 тепловой энергии. Так как большая часть стоимости аккумуляторов для обогрева зданий связана со стоимостью конструкций, такие аккумуляторы могут оказаться дешевле, чем водяные емкости с более низкой удельной плотностью запасания

Аккумулирование тепла в любой водонагревательной системе позволяет приспособить ее к условиям изменяющегося на протяжении суток спроса на горячую воду. Применение различных средств для накопления энергии при использовании солнечных энергетических установок позволяет также преодолеть и другую трудность, связанную с непостоянством интенсивности солнечной энергии в течение суток. Как мы уже видели, даже в условиях безоблачного неба приемлемое количество энергии при подходящей температуре жидкости можно получать лишь в течение нескольких часов до и после полудня. Более высокие температуры требуются лишь на короткие промежутки времени. Например, солнечные энергетические установки, предназначенные для отопления зданий, поддерживают температуру теплоносителя на уровне 60° С лишь около трех часов в сутки. Поскольку в подобных системах периоды потребления и получения энергии не совпадают, то очевидно, что ее нужно накапливать в течение суток, чтобы затем отбирать при подходящей температуре.

В развитых странах с похожим на английский климатом в зимнее время средний ежесуточный расход энергии на горячее водоснабжение и отопление жилых домов оценивается в 15 и 150 кВт-ч соответственно. Ежедневные затраты энергии на горячее водоснабжение крупных больниц в странах тропического пояса составляют несколько МВт-ч. Если для накопления энергии используется вода, подогретая, скажем, на 10 К, то при ее удельной теплоемкости 1,2 Вт-ч/(кг-К), малой скорости расхода в ждлом здании и без учета потерь для получения в течение суток необходимого количества энергии требуется около 14 тыс. л воды, а занимаемый ею объем составляет 14 м2. Эта цифра выглядит более или менее реальной, но применительно к больнице она достигает 200 тыс. л; а соответствующее сооружение технически осуществить чрезвычайно трудно.

С подобной трудностью сталкиваются при разработке бытовых ночных электронагревателей, получивших сейчас в Англии широкое распространение. В таких нагревателях, потребляющих сравнительно малую мощность, электрические элементы разогревают специальный материал, который хорошо удерживает тепло. Запасенная таким образом энергия затем постепенно расходуется, поддерживая температуру помещения в определенных пределах. При этом материал настолько перегревается, что обычно для теплоизоляции в нагревательных элементах используют огнеупорный кирпич. В результате подобные нагреватели оказываются весьма громоздкими.

При использовании солнечных коллекторов энергия накапливается либо в подземных резервуарах с водой, либо в заполненных камнями отсеках. Второй вариант предпочтительнее для воздухонагревательных систем, где воздух нагревается, проходя между камнями. Если предположить, что камни имеют одинаковый размер и сферическую форму, то пустоты между ними составляют около трети общего объема отсека. Это обеспечивает большую поверхность контакта нагреваемого воздуха и хорошие условия для теплообмена. Основным недостатком подобных систем является их низкая теплоемкость (в четыре раза.меньше теплоемкости воды).

В рассмотренных устройствах тепловая энергия накапливается за счет повышения кинетической и потенциальной энергии молекул среды. Значительно большая энергия расходуется при фазовых переходах, то есть в процессе разрушения упорядоченной структуры, например при плавлении или парообразовании. В таком случае входная энергия преимущественно тратится на повышение потенциальной энергии молекул, обусловленное увеличением расстояния между ними. В одной из разновидностей солнечного нагревателя в качестве такого накапливающего тепло вещества используется парафин, температура плавления которого равна примерно 55° С, а скрытая теплота плавления составляет около 40 Вт-ч/кг. При охлаждении парафина мы вновь получаем эту энергию, но при более удобной температуре. В подобном устройстве для накопления 150 кВт-ч тепловой энергии объем резервуара не превышает 4 м3. В качестве теплоносителей применяются также гидраты некоторых солей. Например, глауберова соль Na2S04-10H20 плавится при температуре около 32 °С, при этом на разрушение кристаллической структуры затрачивается приблизительно 67 Вт-ч/кг. При охлаждении ее до той же температуры накопленная энергия высвобождается. Процесс "плавления - затвердевания соли можно повторить многократно, однако установлено, что если расплав соли не перемешивать, то возникает перераспределение концентрации, затрудняющее рекристаллизацию соли. Благодаря постояным поискам и исследованиям удалось найти и другие вещества с большой скрытой теплотой плавления, в которых обратимые фазовые переходы осуществляются при температуре 40-60° С. К сожалению, многие из них непригодны из-за высокой стоимости, взрывоопасно- сти, токсичности, коррозионной активности и т. д.

Тепловой аккумулятор – устройство, предназначенное для накопления тепловой энергии с целью ее использования в домах, зданиях, на промышленном производстве.

Тепловой аккумулятор или, как его иногда еще называют – буферная емкость – ни что иное, как обыкновенная бочка (круглая или квадратная). Но бочка эта не простая, а волшебная.

Она способна экономить ваши деньги и создавать комфортную температуру в доме. У самой простой модификации теплового аккумулятора два выхода вверху и два внизу. Что еще может быть проще? Про тепловой аккумулятор наслышаны многие, но когда и как его применить, сэкономив при этом на отоплении, знают далеко не все.

Когда выгодно выполнить монтаж теплового аккумулятора:

У вас стоит твердотопливный котел;

Вы отапливаетесь электричеством;

В помощь к отоплению добавлены солнечные коллекторы;

Есть возможность утилизировать тепло от агрегатов и машин.


Самый распространенный случай применения теплового аккумулятора, когда в качестве источника тепла используется твердотопливный котел. Тот, кто пользовался твердотопливным котлом для отопления своего дома знает, какого комфорта можно добиться с помощью подобной отопительной системы. Затопил – разделся, прогорел – оделся. По утрам в доме с таким источником тепла не хочется вылазить из-под одеяла. Регулировать процесс горения в твердотопливнос котле очень трудно.Топить нужно и при +10С, и при -40С. Горение и количество выделяемого тепла будет одинаковым, только вот этого самого тепла нужно совсем по-разному. Что же делать? О каком КПД может идти речь, когда при плюсовой температуре приходится открывать окна. Ни о каком комфорте и речи быть не может.

Схема монтажа твердотопливного котла с тепловым аккумулятором – идеальное решение для частного дома, когда хочется и уюта, и экономии. При подобной компановке вы растапливаете твердотопливный котел, нагреваете воду в тепловом аккумуляторе и получаете столько тепла, сколько вам нужно. При этом котел будет работать на максимальной мощности и с наибольшим КПД. Сколько тепла дадут дрова или уголь, столько и запасете.

Второй вариант. Монтаж теплового аккумулятора с электрокотлом. Данное решение сработает, если у вас имеется двухтарифный электросчетчик. Запасаем тепло по ночному тарифу, расходуем и днем, и ночью. Если вы решили применить такую систему обогрева, лучше поискать тепловой аккумулятор с возможностью установки электротена прямо в бочку. Электротен стоит дешевле электрического котла, да и материала для обвязки котла не потребуется. Минус работа по монтажу электрокотла. Представляете сколько можно сэкономить?

Третий вариант, когда имеется солнечный коллектор. Весь избыток тепла можно скидывать в тепловой аккумулятор. В демисезонье получается отличная экономия.

Расчет теплового аккумулятора

Формула расчета очень простая:

Q = mc(T2-T1), где:

Q - накопленная теплота;

m - масса воды в баке;

с - удельная теплоемкость теплоносителя в Дж/(кг*К), для воды равная 4200;

Т2 и Т1 - начальная и конечная температуры теплоносителя.

Допустим, у нас радиаторная система отопления. Радиаторы подобраны под температурный режим 70/50/20. Т.е. при опускании температуры в баке аккумулятора ниже 70С, мы начнем испытывать недостачу тепла, то есть попросту замерзать. Давайте расчитаем, когда это произойдет.

90 – это наши Т1

70 – это Т2

20 – температура в помещении. Она нам в расчете не понадобится.

Допустим, у нас тепловой аккумулятор на 1000 литров (1м3)

Считаем запас тепла.

Q =1000*4200*(90-70)=84 000 000 Дж или 84 000 кДж

1 кВт-ч = 3600 кДж

84000/3600=23,3 кВт тепла

Если теплопотери дома – 5 кВт в холодную пятидневку, то нам хватит запасенного тепла почти на 5 часов. Соответственно, если температура выше расчетной на холодную пятидневку, то теплового аккумулятора будет достаточно на более продолжительное время.

Подбор объема теплового аккумулятора зависит от ваших задач. Если необходимо сгладить температуру, ставим небольшой объем. Если требуется накопить тепло вечером, чтобы утром проснуться в теплом доме, нужен большой агрегат. Пусть стоит вторая задача. С 2300 до 0700 – должен быть запас тепла.

Предположим, что теплопотери – 6 кВт, а температурный режим системы отопления – 40/30/20. Теплоноситель в тепловом аккумуляторе может разогреться до 90С

Время запаса 8 часов. 6*8=48 кВт

M = Q /4200*(Т2-Т1)

48*3600=172800 кДж

V =172800/4200*50=0,822 м3

Тепловой аккумулятор от 800 до 1000 литров удовлетворит нашим требованиям.

Плюсы использования теплового аккумулятора в доме с утеплением

Если на вашем участке нет народного достояния – магистрального газа, впору задуматься о правильной системе отопления. Самое лучшее время, когда только готовится проект, а самое неподходящее – когда вы уже живете в доме и поняли, что отопление обходится очень дорого.

Идеальный дом для монтажа твердотопливного котла и теплового аккумулятора – это здание с хорошим утеплением и низкотемпературной системой отопления. Чем лучше утепление, тем меньше теплопотери и тем дольше ваш тепловой аккумулятор сможет поддерживать комфортное тепло.

Низкотемпературная система отопления. Выше мы привели пример с радиаторами, когда температурный режим составлял 90/70/20. При низкотемпературном режиме условия будут – 35/30/20. Почувствуйте разницу. В первом случае уже при понижении температуры ниже 90 градусов вы почувствуете недостачу тепла. В случае с низкотемпературной системой, можно спокойно спать до утра. Зачем быть голословным. Предлагаем просто посчитать выгоду.

Способ мы просчитали выше.

Вариант с низкотемпературной системой отопления

Q =1000*4200*(90-35)=231 000 000 Дж (231000 кДж)

231000/3600=64,2 кВт. Это почти в три раза больше при одинаковом объеме теплового аккумулятора. При теплопотерях – 5 кВт такого запаса хватит на всю ночь.

А теперь о финансах. Допустим, мы смонтировали тепловой аккумулятор с электрическими тенами. Запасаем по ночному тарифу. Мощность тенов – 10 кВт. 5 кВт уходит на текущий обогрев дома в ночное время, 5 кВт мы можем запасти на день. Ночной тариф с 23-00 до 07-00. 8 часов.

8*5=40 кВт. Т.е. днем мы будем пользоваться в течении 8-ми часов ночным тарифом.

С 1 го января 2015 года в Краснодарском крае дневной тариф составляет 3,85, ночной – 2,15.

Разница – 3,85-2,15=1,7 рубля

40*1,7=68 рублей. Сумма кажется маленькой, но не спешите. Выше мы давали ссылки на утепленный дом и неутепленный. Представим, что вами сделана ошибка – дом построен, вы уже прошли первый отопительный сезон и поняли, что отопление электричеством обходится очень дорого. Выше мы привели пример теплопотерь неутепленного дома. В примере теплопотери составляют 18891 ватт. Это в холодную пятидневку. Средняя за отопительный сезон будет ровно в 2 раза меньше и составит 9,5 кВт.

Следовательно, за отопительный сезон нам необходимо 24*149*9,5=33972 кВт

В рублях 16 часов, 2/3 (22648) по дневному тарифу, 1/3 (11324 кВт) по ночному.

22648*3,85=87195 руб

11324*3,85=24346 руб

Итого: 111541 руб. Цифра за тепло просто ужасающая. Такая сумма способна опустошить любой бюджет. Если же ночью запасти тепло, то можно сэкономить. 38502 рублей за отопительный сезон. Немалая экономия. Если у вас такие расходы, в пару к электрокотлу необходимо ставить твердотопливный котел или камин с водяной рубашкой. Есть время и желание – закинули дровишки, запасли тепло в тепловой аккумулятор, остальное добиваем электричеством.

В утепленном доме с тепловым аккумулятором стоимость отопительного сезона будет сопоставима с аналогичными неутепленными домами, в которых есть магистральный газ.

Наш выбор, когда нет магистрального газа, такой:

Хорошо утепленный дом;

Низкотемпературная система отопления;

Тепловой аккумулятор;

Твердотопливный котел иди водяной камин;

Электрокотел.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Жидкостные тепловые аккумуляторы. Физические основы для его создания. Аккумуляторы тепла, основанные на фазовых переходах. Особенности тепловых аккумуляторов с твёрдым теплоаккумулирующим материалом. Конструкция теплового аккумулятора фазового перехода.

    реферат , добавлен 18.01.2010

    Особенности конструкции разработанной фритюрницы для приготовления картофеля фри. Расчет полезно используемого тепла. Определение потерь тепла в окружающую среду. Конструирование и расчет электронагревателей. Расход тепла на нестационарном режиме.

    курсовая работа , добавлен 16.05.2014

    Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат , добавлен 22.12.2010

    Характеристика Солнца как источника энергии. Проектирование и постройка зданий с пассивным использованием солнечного тепла, способы уменьшения энергопотребления. Виды концентрационных станций, конструкции активной гелиосистемы и вакуумного коллектора.

    реферат , добавлен 11.03.2012

    Фотоэлектрическое преобразование солнечной энергии. Элементы солнечных батарей. Регуляторы зарядки и разрядки аккумуляторов, отбора мощности батареи. Технические характеристики, устройство и принцип работы современных термоэлектрических генераторов.

    реферат , добавлен 16.02.2015

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Расчет расхода тепла на отопление, вентиляцию, горячее водопотребление. Графики часового и годового потребления тепла по периодам и месяцам. Схема теплового узла и присоединения теплопотребителей к теплосети. Тепловой и гидравлический расчет трубопровода.

    курсовая работа , добавлен 25.01.2015

    Определение параметров цикла со смешанным подводом теплоты в характерных точках. Политропное сжатие, изохорный подвод тепла, изобарный подвод тепла, политропное расширение, изохорный отвод тепла. Количество подведённого и отведённого тепла, КПД.

    контрольная работа , добавлен 22.04.2015

Термохимическое аккумулирование тепла основано на ис­пользовании энергии связей обратимых химических реакций

химического аккумулирования

Объемная

плотность

«Необходимый

запасаемой энергии

до и после разрядки, кг/кг

0,0482 ** 0,0023 * 0,0501 **

(иногда определение термохимического аккумулирования включает также аккумулирование теплоты сорбции). Реакция может проходить в присутствии катализатора или без него. Про­дукты реакции должны быть разделены и храниться порознь.

В табл. 2.4 приведены некоторые реакции, предложенные для термохимического аккумулирования. Реакции зарядки протекают слева направо. Теплота реакции отнесена к 1 кг об­щей массы реагентов. Температура реакции представляет со­бой так называемую «обратимую температуру», соответствую­щую случаю, когда коэффициент реакции равен единице. Про-

дукты реакции газообразные. Если хотя бы один из продуктов реакции хранится в жидком состоянии, то плотность запасен­ной энергии может быть увеличена. Однако во время кон­денсации (зарядки) высвобождается теплота испарения, ко­торая обычно не используется и снижает эффективность акку­мулирования.

Для перспективных солнечных электростанций с газовыми турбинами было предложено использование диссоциа­ции S03. Плотность запасаемой энергии в этом случае вполне приемлема, несмотря на высокие давления хранения кисло­рода. Характеристики дополнительно повышаются, если SO2, получаемый во время операции зарядки, закачивается в опо­рожненный сосуд для хранения S03 (аналогично рис. 2.9,6). Однако проблемы, связанные со сроком службы катализатора и конструкционных материалов, ждут своего решения.

Для аккумулирования и передачи тепла будущих высоко­температурных реакторов, охлаждаемых гелием, была пред­ложена реакция между метаном и водяным паром . Эта реакция не очень перспективна, если иметь в виду лишь цели аккумулирования тепла, потому что продукты реакции газо­образны, вследствие чего плотность запасаемой энергии низка.

Диссоциация NH4HSO4 обеспечивает очень высокую плот­ность запасаемой энергии, так как все продукты могут хра% ниться в жидком состоянии. Эта соль имеет низкую точку плавления (144°С); она сравнительно недорога, а продукты реакции NH3, S03 и Н20 легко разделяются, конденсируется, хранятся и испаряются. Хотя эта схема термохимического ак­кумулирования представляет интерес, ее разработка еще не завершена.